Plant Protect. Sci., 2025, 61(3):222-241 | DOI: 10.17221/127/2024-PPS

Mitigation of salinity stress effects on Vicia faba L. growth and productivity using proline and salicylic acid foliar applicationOriginal Paper

Hossam El-Beltagi ORCID...1,2, Mohamed El-Nady3, Ahmed Mahmoud Ismail4,5,6, Metwaly Mahfouz Salem Metwaly3
1 Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
2 Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
3 Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
4 Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
5 Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
6 Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt

High soil salinity causes a negative impact on plant growth and lowers crop yields. Thus, pot experiments were conducted to investigate the impact of foliar application of salicylic acid (SA) and proline (Pro), separately and combined, on enhancing salinity tolerance in broad beans. Salinity stress (4.69 ds/m and 6.25 ds/m) significantly reduced plant growth (plant height, leaf area, number of leaf/plant, plant dry weight), chlorophyll pigment content (chlorophyll a, b or total), relative water content, K/Na ratio, seed yield per plant, and N, P, K, and crude protein content in broad bean seeds. Foliar application of Pro and SA, either individually or in combination, enhanced plant growth parameters, chlorophyll pigment content, endogenous proline levels, phenol content, and the activities of antioxidant enzymes [antioxidant enzymes including catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD)]. Additionally, these treatments enhanced plant seed yield, N, P, K, and crude protein levels in the seeds. The combined foliar application of Pro and SA was more effective in mitigating salinity stress’s harmful effects than using either substance alone. These findings indicate that foliar application of SA and Pro, either individually or in combination, alleviated the adverse effects of salinity on broad beans, with the combined application proving to be the most effective.

Keywords: chlorophyll pigments; endogenous proline content; antioxidant enzymes activity; relative water content; phenols content; membrane stability

Received: July 28, 2024; Revised: March 8, 2025; Accepted: April 17, 2025; Prepublished online: May 4, 2025; Published: July 20, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
El-Beltagi H, El-Nady M, Ismail AM, Metwaly MMS. Mitigation of salinity stress effects on Vicia faba L. growth and productivity using proline and salicylic acid foliar application. Plant Protect. Sci. 2025;61(3):222-241. doi: 10.17221/127/2024-PPS.
Download citation

References

  1. A.O.A.C. (2000): Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Inc, Gaithersburg, Method, 04.
  2. Abdelhamid M., Rady M.M., Osman A.S., Abdalla M.A. (2013): Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. plants. Journal of Horticultural Science and Biotechnology, 88: 439-446. Go to original source...
  3. Abdelraouf E.A.A., Adss I.A.A., Dakroury M.Z. (2016): Effect of salinity on growth and genetic diversity of broad bean (Vicia faba L.) cultivars. Alexandria Science Exchange Journal, 37: 467-478. Go to original source...
  4. Aebi H. (1984): Catalase in vitro. Methods in Enzymology, 105: 121-126. Go to original source... Go to PubMed...
  5. Ahmad F., Kamal A., Singh A., Ashfaque F., Alamri S., Siddiqui M.H. (2020): Salicylic acid modulates antioxidant system, defense metabolites, and expression of salt transporter genes in Pisum sativum under salinity stress. Journal of Plant Growth Regulation, 1-14. Go to original source...
  6. Ahmad P., Jaleel C.A., Salem M.A., Nabi G., Sharma S. (2010): Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30: 161-175. Go to original source... Go to PubMed...
  7. Ahmed S., Ahmed S., Roy S.K., Woo S.H., Sonawane K.D., Shohael A.M. (2019): Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4: 361-373. Go to original source...
  8. Alam R., Das D., Islam M., Murata Y., Hoque M. (2016): Exogenous proline enhances nutrient uptake and confers tolerance to salt stress in maize (Zea mays L.). Progressive Agriculture, 27: 409-417. Go to original source...
  9. Aldesuquy H.S., Ibraheem F.L., Ghanem H.E. (2018): Exogenously supplied salicylic acid and trehalose protect growth vigor, chlorophylls and thylakoid membranes of wheat flag leaf from drought-induced damage. Journal of Agriculture and Forest Meteorology Research, 1: 13-20.
  10. Almeida D.M., Oliveira M.M., Saibo N.J. (2017): Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40: 326-345. Go to original source... Go to PubMed...
  11. Alzahrani O., Abouseadaa H., Abdelmoneim T.K., Alshehri M.A., Mohamed E.-M., El-Beltagi H.S., Atia M.A.M. (2021): Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49: 12310. Go to original source...
  12. Annunziata M.G., Ciarmiello L.F., Woodrow P., Maximova E., Fuggi A., Carillo P. (2017): Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Frontiers of Plant Science, 7: 2035. Go to original source... Go to PubMed...
  13. Arafa M.A. (2022): An econometric study for the current and future situation of broad-beans in Egypt. Scientific Journal of Agricultural Sciences, 4: 75-96. Go to original source...
  14. Ashraf M.A., Hafeez A., Rasheed R., Hussain I., Farooq U., Rizwan M., Ali S. (2023): Evaluation of physio-morphological and biochemical responses for salt tolerance in wheat (Triticum aestivum L.) cultivars. Journal of Plant Growth Regulation, 42: 4402-4422. Go to original source...
  15. Bagherifard A., Bagheri A., Sabourifard H., Bagherifard G., Najar M. (2015): The effect of salicylic acid on some morphological and biochemistry parameters under salt stress in herb artichoke (Cynara Scolymus L.). Research Journal of Fisheries and Hydrobiology, 10: 745-750.
  16. Balasubramaniam T., Shen G., Esmaeili N., Zhang H. (2023): Plants' Response Mechanisms to Salinity Stress. Plants, 12: 2253. Go to original source... Go to PubMed...
  17. Barton L., Thamo T., Engelbrecht D., Biswas W.K. (2014): Does growing grain legumes or applying lime cost effectively lower greenhouse gas emissions from wheat production in a semiarid climate? Journal of Cleaner Production, 83: 194-203. Go to original source...
  18. Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207. Go to original source...
  19. Bessada S.M., Barreira J.C., Barros L., Ferreira I.C., Oliveira  M.B.P. (2016): Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.F.: An underexploited and highly disseminated species. Industrial Crops and Products, 89: 45-51. Go to original source...
  20. Castillo J.M., Mancilla-Leytón J.M., Martins-Noguerol R., Moreira X., Moreno-Pérez A.J., Muñoz-Vallés S., Pedroche J.J, Figueroa M.E, et al. (2022): Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Scientia Horticulturae (ISHS), 301: 111136. Go to original source...
  21. Chapman H.D., Pratt P.F. (1978): Methods of analysis for soils, plants and waters. University of California. Division of Agricultural Sciences, Oakland.
  22. de Freitas P.A.F., de Carvalho H.H., Costa J.H., Miranda R., Saraiva K.D.C., de Oliveira F.D.B., Coelho G.C., Prisco J.T.,, et al. (2019): Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Reports, 38: 403-416. Go to original source... Go to PubMed...
  23. de Morais M.B., Camara T.R., Ulisses C., Carvalho Filho J.L.S., Willadino L. (2018): Multiple stresses on the oxidative metabolism of sugarcane varieties. Ciencia Rural, 48: 1-8. Go to original source...
  24. Duncan D.B. (1955): Multiple range and multiple F-test. Biometrics, 11: 1-42. Go to original source...
  25. Ehtaiwesh A.F. (2022): The effect of salinity on nutrient availability and uptake in crop plants. Scientific Journal of Applied Sciences of Sabratha University, 9: 55-73.
  26. El Moukhtari A., Cabassa-Hourton C., Farissi M., Savouré A. (2020): How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science, 11: 1-16. Go to original source... Go to PubMed...
  27. El-Beltagi H.S., Mohamed H.I., Aldaej M.I., Al-Khayri J.M., Rezk A.A., Al-Mssallem M.Q., Sattar M.N., Ramadan K.M.A. (2022a): Production and antioxidant activity of secondary metabolites in Hassawi rice (Oryza sativa L.) cell suspension under salicylic acid, yeast extract, and pectin elicitation. In Vitro Cellular & Developmental Biology - Plant, 58: 615-629. Go to original source...
  28. El-Beltagi H.S., Ahmad I., Basit A., Shehata W.F., Hassan U., Shah S.T., Haleema B., Jalal A., et al. (2022b): Ascorbic acid enhances growth and yield of sweet peppers (Capsicum annum) by mitigating salinity stress. Gesunde Pflanzen, 74: 423-433. Go to original source...
  29. EEl-Beltagi H.S, El-Naqma K.A., Al-Daej M.I., El-Afry M.M., Shehata W.F., El-Nady M.F., Ismail A.M., Eltonoby W.F., et al. (2024): Effects of zinc nanoparticles and proline on growth, physiological and yield characteristics of pea (Pisum sativum L.) irrigated with diluted seawater. Cogent Food Agriculture, 10: 2348695. Go to original source...
  30. El-Esawi M.A., Elansary H.O., El-Shanhorey N.A., Abdel-Hamid A.M., Ali H.M., Elshikh M.S. (2017): Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8: 716. Go to original source... Go to PubMed...
  31. El-Mogy M.M., Garchery C., Stevens R. (2018): Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 68: 727-737. Go to original source...
  32. El-Tayeb M.A. (2005): Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulator, 45: 215-224. Go to original source...
  33. El-Waraky E.A., El-Beltagi H.S., El-Nady M.F., Al-daej M.I., Belal E.B., Shehata W.F., Hadid M.L., Metwaly M.S.M. (2024): Responses of Gossypium barbadense L. Cotton plants to biofertilizers under different levels of nitrogen fertilization. Polish Journal of Environmental Studies, 33: 1-13. Go to original source...
  34. Fairoj S.A., Islam M.M., Islam M.A., Zaman E., Momtaz M.B., Hossain M.S., Murata Y. (2022): Salicylic acid improves agro-morphology, yield and ion accumulation of two wheat (Triticum aestivum L.) genotypes by ameliorating the impact of salt stress. Agronomy, 13: 25. Go to original source...
  35. FAOSTAT Statistical Database (2019): Food and Agriculture Organization of the United Nations [FAO]. Available at: http://www.fao. org/faostat/en/
  36. Farissi M., Aziz F., Bouizgaren A., Ghoulam C. (2014): Legume-rhizobia symbiosis under saline conditions: Agro-physiological and biochemical aspects of tolerance. International Journal of Innovation Science, 11: 96-104.
  37. Feigin A. (1985): Fertilization management of crops irrigated with saline water. Plant and Soil, 89: 285-299. Go to original source...
  38. Frukh A., Siddiqi T.O., Khan M.I.R., Ahmad A. (2020): Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiology and Biochemistry, 146, 55-70. Go to original source... Go to PubMed...
  39. Gao Y., Zhang J., Wang C., Han K., Hu L., Niu T.,... Xie J. (2023): Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants, 12: 928. Go to original source... Go to PubMed...
  40. Ghanem A.E.M.F.M., Mohamed E., Kasem A.M.M.A., El-Ghamery A.A. (2021): Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants, 10: 1100. Go to original source... Go to PubMed...
  41. Giannopolitis C.N., Ries S.K. (1977): Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59: 309-314. Go to original source... Go to PubMed...
  42. Gill S.S., Tuteja N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930. Go to original source... Go to PubMed...
  43. Goharrizi K.J., Baghizadeh A., Kalantar M., Fatehi F. (2020): Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Scientia Horticulturae (ISHS), 261: 108970. Go to original source...
  44. Gomez K.A., Gomez A.A. (1984): Statistical Procedures for Agricultural Research, John Wiley and Sons, New York.
  45. Hadid M.L., El-Mageed T.A.A., Ramadan K.M.A., El-Beltagi H.S., Alwutayd K.M., Hemida K.A., Shalaby T.A., Al-daej M.I., et al. (2024): Pyridoxine-HCl plus gypsum and humic acid reinforce salinity tolerance of coriander plants with boosting yield and modifying oil fractionations. Russian Journal of Plant Physiology, 71: 64. Go to original source...
  46. Hare P.D., Cress W.A. (1997): Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21: 79-102 Go to original source...
  47. Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A.(2012): Role of proline under changing environments: A review. Plant Signaling & Behavior,. 7: 1-11. Go to original source... Go to PubMed...
  48. Hussain R.A., Ahmad R., Waraich E.A., Nawaz F. (2015): Nutrient uptake, water relations, and yield performance lf diferent wheat cultivars (Triticum aestivum L.) under salinity stress. Journal of Soil Science and Plant Nutrition, 38: 2139-2149. Go to original source...
  49. Ismail E.E.M., Helmy M.M. (2018): Effect of proline and potassium humate on growth, yield and quality of broad bean under saline soil conditions. Journal of Plant Production, 9: 1141-1145. Go to original source...
  50. Jangra M., Devi S, Satpal Kumar N., Goyal V., Mehrotra S. (2022): Amelioration effect of salicylic acid under salt stress in Sorghum bicolor L. Applied Biochemistry and Biotechnology, 194: 4400-4423. Go to original source... Go to PubMed...
  51. Jogawat A. (2019): Osmolytes and their role in abiotic stress tolerance in plants. In: Molecular Plant Abiotic Stress: Biology and Biotechnology Chapter 5 John Wiley Sons Ltd. National Institute of Plant Genome Research: 91-104. Go to original source...
  52. Julkowska M.M., Testerink C. (2015): Tuning plant signaling and growth to survive salt. Trends in Plant Science, 20: 586-594. Go to original source... Go to PubMed...
  53. Kafi M., Nabati J., Ahmadi-Lahijani M.J., Oskoueian A. (2021): Silicon compounds and potassium sulfate improve salinity tolerance of potato plants through instigating the defense mechanisms, cell membrane stability, and accumulation of osmolytes. Communications in Soil Science and Plant Analysis, 52: 843-858. Go to original source...
  54. Kalapos T. (1994): Leaf water potential, leaf water deficit relationship for ten species of semiarid grassland community, Plant Soil, 160: 105-112. Go to original source...
  55. Kapoor R., Soni K., Sharma A. (2024): Impact of salinity stress on agricultural crops: Responses and challenges. Fundamentals of Soil Science, 2: 19-32.
  56. Kaya C., Kirnak H., Higgs D., Saltali K. (2002): Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity. Scientia Horticulturae (ISHS), 93: 65-74. Go to original source...
  57. Khan I., Raza M.A., Awan S.A., Shah G.A., Rizwan M., Ali B., Tariq R., Hassan M.J., et al. (2020): Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156: 221-232. Go to original source... Go to PubMed...
  58. Khan N., Bano A., Babar M.A. (2019): The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Archives of Microbiology, 201; 769-785. Go to original source... Go to PubMed...
  59. Khodary S.E.A. (2004): Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture and Biology, 6: 5-8.
  60. Kholova J., Sairam R.K., Meena R.C. (2010): Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzyme activity as determinants of salinity stress tolerance in maize. Acta Physiologiae Plantarum, 32: 477-486. Go to original source...
  61. Koo Y.M., Heo A.Y., Choi H.W. (2020): Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36: 1-10. Go to original source... Go to PubMed...
  62. Kumar A., Prasad N., Sinha S.K. (2015): Nutritional and antinutritional attributes of faba bean (Vicia faba L.) germplasms growing in Bihar, India. Physiology and Molecular Biology of Plants, 21: 159-162. Go to original source... Go to PubMed...
  63. Kuznetsov V.V., Shevyakova N.I. (1999): Proline under stress: biological role, metabolism and regulation. Russian Journal of Plant Physiology, 46: 274-287.
  64. Lhissoui R., El Harti A., Chokmani K. (2014): Mapping soil salinity in irrigated land using optical remote sensing data. Eurasian Journal of Soil Science, 3: 82-88. Go to original source...
  65. Lutts S., Kinet J.M., Bouharmont J. (1996): NaCl-induced senescence in leaves of Rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78: 389-398. Go to original source...
  66. Maas E.V., Grattan S.R. (1999): Crop yields as affected by salinity. Agricultural drainage, 38: 55-108. Go to original source...
  67. Machado R.M.A., Serralheiro R.P. (2017): Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3: 30. Go to original source...
  68. Mansour M.M.F. (2013): Plasma membrane permeability as an indicator of salt tolerance in plants. Biologia Plantarum, 57: 1-10. Go to original source...
  69. Mohamed A.A., Sameeh M.Y., El-Beltagi H.S. (2023): Preparation of seaweed nanopowder particles using planetary ball milling and their effects on some secondary metabolites in Date Palm (Phoenix dactylifera L.) Seedlings. Life, 13: 39. Go to original source... Go to PubMed...
  70. Monica N., Vidican R., Pop R., Rotar I. (2013): Stress factors affecting symbiosis activity and nitrogen fixation by Rhizobium cultured in vitro. ProEnvironment, 6: 42-45.
  71. Moran R. (1982): Formulae for determination of chlorophllous pigments extracted with N, N-Dimetheylformamide. Plant Physiology, 69: 1376-1381. Go to original source... Go to PubMed...
  72. Naliwajski M., Skłodowska M. (2021): The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress. Cells, 10: 609. Go to original source... Go to PubMed...
  73. Nasrallah A.K., Kheder A.A., Kord M.A., Fouad A.S., El-Mogy M.M., Atia M.A. (2022): Mitigation of salinity stress effects on broad bean productivity using calcium phosphate nanoparticles application. Horticulturae, 8: 75. Go to original source...
  74. Okuma E., Murakami Y., Shimoishi Y., Tada M., Murata Y (2008): Effects of exogenous application of proline and Betaine on the growth of tobacco cultured cells under saline conditions. Soil Science and Plant Nutrition, 50: 1301-1305. Go to original source...
  75. Orsini F., Maggio A., Rouphael Y., De Pascale S. (2016): Physiological quality of organically grown vegetables. Scientia Horticulturae (ISHS), 208: 131-139. Go to original source...
  76. Panda D., Mishra S.S., Behera P.K. (2021): Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Science, 28: 119-132. Go to original source...
  77. Polle A., Otter T., Seifert F. (1994): Apoplastic peroxidases and lignification in needles of Norway Spruce Picea abies L. Plant Physiology, 106: 53-60. Go to original source... Go to PubMed...
  78. Rady M.M. (2011): Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129: 232-237. Go to original source...
  79. Rady M., Kusvuran A., Alharby H.F., Alzahrani Y., Kusvuran S. (2019): Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the Oxidative stress. Journal of Plant Growth Regulation, 38: 449-462. Go to original source...
  80. Ramadan K.M.A., El-Beltagi H.S., El-Mageed T.A.A., Saudy H.S., Al-Otaibi H.H., Mahmoud M.A.A. (2023): The changes in various physio-biochemical parameters and yield traits of faba bean due to humic acid plus 6-benzylaminopurine application under deficit irrigation. Agronomy, 13: 1227. Go to original source...
  81. Reddy I.N.B.L., Kim S.M., Kim B.K., Yoon I.S., Kwon T.R. (2017): Identification of rice accessions associated with K+/Na+ ratio and salt tolerance based on physiological and molecular responses. Rice Science, 24: 360-364. Go to original source...
  82. Sagervanshi A., Naeem A., Geilfus C.M., Kaiser H., Mühling K.H. (2021): One-time abscisic acid priming induces long-term salinity resistance in Vicia faba: Changes in key transcripts, metabolites, and ionic relations. Physiologia Plantarum, 172: 146-161. Go to original source... Go to PubMed...
  83. Sahar K., Amin B., Taher N.M. (2011): The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. Journal of Stress Physiology Biochemistry, 7: 80-87.
  84. Samy M., Shaimaa F., Hoda A.K. (2015): Effect of salicylic acid on growth and physiological status of salt stressed sour orange seedlings (Citrus aurantium L.): Alexandria Journal of Agricultural Sciences, 60: 229-239. Go to original source...
  85. Santander C., Vidal G., Ruiz A., Vidal C., Cornejo P. (2022): Salinity eustress increases the biosynthesis and accumulation of phenolic compounds that improve the functional and antioxidant quality of red lettuce. Agronomy, 12: 598. Go to original source...
  86. Saxena R., Kumar M., Tomar R.S. (2019): Plant responses and resilience towards drought and salinity stress. Plant Archives, 12: 50-58.
  87. Scudiero E., Skaggs T.H., Corwin D.L. (2016): Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecological Indicators, 70: 276-284. Go to original source...
  88. Shalaby T.A., El-Newiry N.A., El-Tarawy M., El-Mahrouk M.E., Shala A.Y., El-Beltagi H.S., Rezk A.A., Ramadan K.M.A., et al. (2023): Biochemical and physiological response of marigold (Tagetes Erecta L.) to foliar application of salicylic acid and potassium humate in different soil growth media. Gesunde Pflanzen, 75: 223-236. Go to original source...
  89. Silva A.A.R., de Lima G.S., de Azevedo C.A.V., Gheyi H.R., de Souza A.R., Fernandes P.D. (2021): Salicylic acid relieves the effect of saline stress on soursop morphysiology. Ciência e Agrotecnologia, 33: e007021.  Go to original source...
  90. Singh A.K., Bharati R., Pedpati A. (2013): An assessment of faba bean (Vicia faba L.) current status and future prospect. African Journal of Agricultural Research, 8: 6634-6641.
  91. Tränkner M., Tavakol E., Jákli B. (2018): Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163: 414-431. Go to original source... Go to PubMed...
  92. Urmi T.A., Islam M., Zumur K.N., Abedin A.M., Moynul Haque M., Siddiqui M.H., Murata Y., Hoque A. (2023): Combined effect of salicylic acid and proline mitigates drought stress in Rice (Oryza sativa L.) through the modulation of physiological attributes and antioxidant enzymes. Antioxidants, 12: 1438. Go to original source... Go to PubMed...
  93. Walinga I., Van Der Lee J., Houba V.J., Vanvark W., Novozamsky I. (2013): Plant Analysis Manual. SpringerScience, Berlin: 1-239.
  94. Wu G.Q., Feng R.J., Li S.L., Du Y.Y. (2017): Exogenous application of proline alleviates salt-induced toxicity in sainfoin seedlings. Journal of Animal and Plant Sciences, 27: 246-251.
  95. Xu D., Wang W., Gao T., Fang X., Gao X., Li J., Bu H., Mu J. (2017): Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conservation Physiology, 5: cox060. Go to original source...
  96. Yadu S., Dewangan T.L., Chandrakar V., Keshavkant S. (2017): Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiology and Molecular Biology of Plants, 23: 43-58. Go to original source... Go to PubMed...
  97. Yang F., Xiao X., Zhang S., Karpelainen J. (2009): Salt stress responses in Populus cathayana Rehder. Plant Science, 176: 667-677. Go to original source...
  98. Yildirim E., Turan M., Guvenc I. (2008): Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition, 31: 593-612. Go to original source...
  99. Youssef R.A., El-Azab M.E., Mahdy H.A., Essa E.M., Mohammed K.A. (2017): Effect of salicylic acid on growth, yield, nutritional status and physiological properties of sunflower plant under salinity stress. International Journal of Pharmaceutical and Phytopharmacological Research, 7: 54-58.
  100. Zhao S., Zhang Q., Liu M., Zhou H., Ma C., Wang P. (2021): Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22: 4609. Go to original source... Go to PubMed...
  101. Zhu J., Fan Y., Shabala S., Li C., Lv C., Guo B., Xu R., Zhou M. (2020): Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. International Journal of Molecular Sciences, 21: 1516. Go to original source... Go to PubMed...
  102. Zivcak M., Brestic M., Sytar O. (2016): Osmotic adjustment and plant adaptation to drought stress. In: Hossainh M.A, Wani S.H, Bhattacharjee S, Burritt D.J, Tran L.S.P. (eds): Drought Stress Tolerance in Plants, Springer International Publishing: Cham, Switzerland: 105-143. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.