Plant Protect. Sci., 2025, 61(3):278-290 | DOI: 10.17221/103/2024-PPS

Comparison of the actual release dates of ascospores of the fungus Venturia inaequalis with those predicted by selected simulation models in an apple orchard in Central PolandOriginal Paper

Sylwester Masny ORCID...1, Piotr Sobiczewski ORCID...1
1 Plant Protection Department, The National Institute of Horticultural Research, Skierniewice, Poland

The research was conducted in 2014–2017 in a multi-cultivar apple orchard in the Experimental Orchard of the National Institute of Horticultural Research (IO-PIB) in Dąbrowice near Skierniewice. To determine the actual Venturia inaequalis ascospores release dates, the Burkard spore trap installed in a plot of the McIntosh cv. that was not protected against apple scab was used. Monitoring of ascospore releases was carried out annually, starting from the appearance of numerous colouring (maturing) ascospores in the pseudothecia (usually in the second decade of March) and ending at the second half of June, usually about two weeks after the last release of these spores. The sums of ascospores detected on a given day and their proportion in all ascospores recorded during primary infections were calculated. The obtained results formed the basis for the analysis of forecast indications of the A-scab, Metos (Metos® Pessl Instruments), and RIMpro-Venturia models in connection with meteorological data from the Metos weather station installed in this orchard and to compare them with the actual release dates recorded by the Burkard spore trap. Depending on the year, significant differences were found in the number and intensity of V. inaequalis ascospore releases and in their beginning and end dates.

Keywords: apple scab; ascospore discharges; Malus; A-scab, Metos and RIMpro-Venturia models

Received: June 24, 2024; Revised: January 15, 2025; Accepted: January 15, 2025; Prepublished online: March 19, 2025; Published: July 20, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Masny S, Sobiczewski P. Comparison of the actual release dates of ascospores of the fungus Venturia inaequalis with those predicted by selected simulation models in an apple orchard in Central Poland. Plant Protect. Sci. 2025;61(3):278-290. doi: 10.17221/103/2024-PPS.
Download citation

References

  1. Alt S., Kollar A. (2010): Hydrodynamics of raindrop impact stimulate ascospore discharge of Venturia inaequalis. Fungal Biology, 114: 320-324. Go to original source... Go to PubMed...
  2. Alves S.A.M., Beresford R.M. (2013): Evaluation of three models for predicting Venturia inaequalis ascospore release in Southern Brazil. New Zealand Plant Protection, 66: 303-307. Go to original source...
  3. Aylor D.E., Sutton T.B. (1992): Release of Venturia inaequalis ascospores during unsteady rain: relationship to spore transport and deposition. Phytopathology, 82: 532-540. Go to original source...
  4. Beresford R.M. (1999): Validation of an ascospore release prediction model for apple black spot (Venturia inaequalis). Proceedings of the 52nd New Zealand Plant Protection Conference, Auckland, August 11, 1999: 148-152. Go to original source...
  5. Beresford R.M., Manktelow D.W.L. (1994): Economics of reducing fungicide use by weather based disease forecasts for control of Venturia inaequalis in apples. New Zealand Journal of Crop and Horticultural Science, 22: 113-120. Go to original source...
  6. Biggs A.R., Sundin G.W., Rosenberger D.A., Yoder K.S., Sutton T.B. (2010): Relative susceptibility of selected apple cultivars to apple scab caused by Venturia inaequalis. Plant Health Progress, 11. Go to original source...
  7. Creemers P., van Laer S. (2006): Key strategies for reduction of the dependence on fungicides in integrated fruit production. Phytopathologia Polonica, 39: 19-29.
  8. Ehlert K., Piepenbring M., Kollar A. (2017): Ascospore release in apple scab underlies infrared sensation. Fungal Biology, 121: 1054-1062. Go to original source... Go to PubMed...
  9. Gadoury D.M., MacHardy W.E. (1982a): A model to estimate the maturity of ascospores of Venturia inaequalis. Phytopathology, 72: 901-904. Go to original source...
  10. Gadoury D.M., Mac Hardy W.E. (1982b): Effects of temperature on the development of pseudothecia of Venturia inaequalis. Plant Disease, 66: 464-468. Go to original source...
  11. Garofalo E.W. (2019): Apple Disease Forecasting Models: When Climate Changes the Rules. [Masters Theses], University of Massachusetts Amherst. Available at: https://scholarworks.umass.edu/masters_theses_2/740.
  12. Hindorf H., Rovekamp I.F., Hensele K. (2000): Decision aids for apple scab warning services (Venturia inaequalis) in Germany. Bulletin OEPP/EPPO Bulletin, 30: 59-64. Go to original source...
  13. Hirst J.M., Stedman O.J. (1962): The epidemiology of apple scab (Venturia inaequalis (Cke.) Wint.) II. Observations on the liberation of ascospores. Annals of Applied Biology, 50: 525-550. Go to original source...
  14. Hoffmeister M., Scheu P., Glaab A., Zito R., Stammler G. (2023): Sensitivity evolution in Venturia inaequalis towards SDHIs in comparison to other modes of action. European Journal of Plant Pathology, 168: 763-773 Go to original source...
  15. Holb I.J. (2009): Fungal disease management in organic apple orchards: epidemiological aspects and management approaches. In: Gisi U., Chet I., Gullino M.L., (eds): Proceedings of the 9th International Congress. Plant pathology in the 21st century: Recent Developments in Management of Plant Diseases. The Netherlands: Springer: 163-177. Go to original source...
  16. Holb I.J., Heijne B., Jeger M.J. (2006): Effects of integrated control measures on earthworms, leaf litter and Venturia inaequalis infection in two European apple orchards. Agriculture, Ecosystems & Environment: 114: 287-295. Go to original source...
  17. James J.R., Sutton T.B. (1982): A model for predicting ascospore maturation of Venturia inaequalis. Phytopathology, 72: 1081-1085. Go to original source...
  18. Jankowski P., Masny S. (2019): Comparison of mathematical models of maturation rate of the airborne Venturia inaequalis (Cooke) Wint. ascospores in central Poland. Journal of Plant Diseases and Protection, 126: 269-279. Go to original source...
  19. Jankowski P., Masny S. (2020): Influence of moisture on maturation rate of the Venturia inaequalis (Cooke) Wint. ascospores in central Poland. Journal of Plant Diseases and Protection, 127: 1-9. Go to original source...
  20. Jeger M.J., Butt D.J. (1983): Overwintering of Venturia inaequalis the causal agent of apple scab in relation to weather. Annals of Applied Biology, 103: 201-218. Go to original source...
  21. Jones A.L., Lillevik S.L., Fisher P.D., Stebbins T.C. (1980): A microcomputer-based instrument to predict primary apple scab infection periods. Plant Disease, 64: 69-72. Go to original source...
  22. MacHardy W.E. (1996): Apple Scab Biology, Epidemiology and Management. St. Paul, The American Phytopathological Society.
  23. MacHardy W.E., Gadoury D.M. (1989): A revision of Mills's criteria for predicting apple scab infection periods. Phytopathology, 79: 304-310. Go to original source...
  24. Manktelow D.W.L., Beresford R.M. (1995): Evaluation of an ascospore monitoring method for Venturia inaequalis to improve apple black spot fungicide management. In: Popay A.J. (Ed.): Procceedings of the 48th New Zealand Plant Protection Conference, The New Zealand Plant Protection Society Inc.: 78-82. Go to original source...
  25. Masny S. (2005): Possibilities of determining the course of ascospore releases of the Venturia inaequalis fungus using the degree-day index. Scientific Symposium "Current Problems in Phytopathology" Lublin, September 20-22, 2005. Abstracts: 90.
  26. Masny S. (2015): Comparison of apple scab forecasting systems. In: Factors Influencing the Yield and Fruits Quality. Plantpress, Kraków: 81-92. (In Polish)
  27. Masny S. (2020): The usefulness of forecasting models in protection of apple trees against scab (Venturia inaequalis). [PhD thesis], The National Institute of Horticultural Research, Skierniewice. (In Polish)
  28. Masny S., Jankowski P. (2012): Influence of meteorological factors on release of Venturia inaequalis ascospores and occurrence of critical infection periods of apple scab. Progress in Plant Protection, 52: 638-641. (In Polish)
  29. Meszka B., Masny S. (2006): Apple scab. Plantpress, Kraków: 68. (In Polish)
  30. Mills W.D. (1944): Efficient use of sulfur dusts and sprays during rain to control apple scab. Cornell Extension Bulletin, 630: 1-4.
  31. Mills W.D., Dewey J.E. (1947): Control of diseases and insects in the orchard. Cornell Extension Bulletin, 711.
  32. Mills W.D., Laplante A.A. (1951): Diseases and insects in the orchard. Cornell Extension Bulletin, 711:
  33. Moller W.J. (1980): Effect of apple cultivar on Venturia inaequalis ascospore emission in California. Plant Disease, 64: 930-931. Go to original source...
  34. Pedersen H.L., Pedersen K.L., Paaske K. (2006): Evaluating the use of RIMpro and Metos weather stations for control of apple scab (Venturia inaequalis) in Denmark 2002-2005. Abstract in IOBC-WPRS Bulletin, 29: 213-217.
  35. Penrose L.J., Heaton J.B. Washington W.S., Wicks T. (1985): Australian evaluation of an orchard based electronic device to predict primary apple scab infections. Journal of the Australian Institute of Agricultural Science, 51: 74-78.
  36. Philion V., Joubert V., Trapman M., Hjelkrem A.G.R., Stensvand A. (2019): Distribution of the infection time of Ascospores of Venturia inaequalis. Plant Disease, 104: 465-473. Go to original source... Go to PubMed...
  37. Rancāne R., Valiuškaitė A., Ozoliņa-Pole L., Bundzēna G., Fiļipovičs M., Rasiukevičiūtė N. (2024): The effectiveness of synthetic and inorganic substances in different apple scab control strategies. Agriculture, 14: 383. Go to original source...
  38. Raudonis L., Valiuškaitė A. (2009): Integrated approach of apple scab management using iMETOS warning system. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkystė ir Daržininkystė, 28: 181-191.
  39. Raudonis L., Valiuškaite A., Rašinskienė A., Survilienė E. (2003): Pests and disease management model of apple-trees according to warning equipment. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkystė ir Daržininkystė, 22: 528-537.
  40. Rossi V., Giosue S., Bugiani R. (2006): Factors influencing deposition of Venturia inaequalis ascospores on apple trees. Bull. OEPP/EPPO Bulletin, 29: 53-58.
  41. Rossi V., Giosuè S., Bugiani R. (2007): A-scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections. OEPP/EPPO Bulletin, 37: 300-308. Go to original source...
  42. Rossi V., Ponti I., Marinelli M., Giosuè1 S., Bugiani R. (2000): A new model estimating the seasonal pattern of airborne ascospores of Venturia inaequalis (Cooke) Wint. in relation to weather conditions. Journal of Plant Pathology, 82: 111-118.
  43. Rossi V., Ponti I., Marinelli M., Giosuè S., Bugiani R. (2001): Environmental factors influencing the dispersal of Venturia inaequalis ascospores in the orchard air. Journal of  Phytopathology, 149: 11-19. Go to original source...
  44. Roubal C., Nicot P.C. (2016): Apple scab: numerical optimization of a new thermal time scale and application for modelling ascospore release in southern France. Plant Pathology, 65: 79-91. Go to original source...
  45. Sacchelli M., Siegfried W. (2004): RIMpro - ein Schorfsimulationsprogramm. Schweizerische Zeitschrift für Obst- und Weinbau, 4: 6-10. (In German)
  46. Schwabe W.F.S. (1980): Wetting and temperature requirements for apple leaf infection by Venturia inaequalis in South Africa. Phytophylactica, 12: 69-80.
  47. Stensvand A., Amundsen T., Semb L., Gadoury D.M., Seem R.C. (1998): Discharge and dissemination of ascospores by Venturia inaequalis during dew. Plant Disease, 82: 761-764. Go to original source... Go to PubMed...
  48. Stensvand A., Eikemo H., Gadoury D.M., Seem R.C. (2005): Use of a rainfall frequency threshold to adjust a degree-day model of ascospore maturity of Venturia inaequalis. Plant Disease, 89: 198-202. Go to original source... Go to PubMed...
  49. Stensvand A., Eikemo H., Seem R.C., Gadoury D.M. (2009): Ascospore release by Venturia inaequalis during periods of extended daylight and low temperature at Nordic latitudes. European Journal of Plant Pathology, 125: 173-178. Go to original source...
  50. Stensvand A., Gadoury D.M., Amundsen T., Seem R.C. (2006): An adaptation of the New Hampshire degree-day model to predict ascospore release of Venturia inaequalis in Norway. Pome Fruit Diseases IOBC/wprs Bulletin, 29: 75-81.
  51. Trapman M. (1994): Development and evaluation of a simulation model for ascospore infection of Venturia inaequalis. Norwegian Journal of Agricultural Sciences - Supplement, 17: 55-67.
  52. Trapman M. (2013): RIMpro User Manual 2013. Available at: https://archive.org/details/manualzilla-id-6879155/page/16/mode/2up (Accessed May 23, 2021)
  53. Triloff P. (1997): Apple scab control with the simulation programme RIMpro at Lake Constance, Germany: results and experiences in the past three years. IOBC-WPRS Bulletin, 20: 229-240.
  54. Villalta O.N., Washington C.W.S., Kita N., Bardon D. (2002): The use of weather and ascospore data for forecasting apple and pear scab in Victoria, Australia. Australasian Plant Pathology, 31: 205-215 Go to original source...
  55. Wallhead M., Zhu H., Broders K. (2017): Hyperspectral evaluation of Venturia inaequalis management using the disease predictive model RIMpro in the Northeastern U.S. Agricultural Sciences, 8: 1358-1371. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.