Plant Protect. Sci., X:X | DOI: 10.17221/116/2024-PPS

Molecular characterisation and screening for сry genes of native Bacillus thuringiensis strains from KazakhstanOriginal Paper

Alnura Tursunova ORCID...1, Ainura Adilkhankyzy1, Shyryn Turbekova ORCID...1, Ulzhalgas Abylayeva1, Ainaz Balabek1, Alibek Uspanov ORCID...1, Bakhytzhan Duisembekov ORCID...1
1 Kazakh Research Institute of Plant Protection and Quarantine named after Zh.Zhiembayev, Almaty, Kazakhstan

The current study aimed to characterise indigenous Bacillus thuringiensis (Bt) strains for their potential use in agricultural broad-spectrum pest control. Twenty-nine Bt strains were isolated from soil in southeastern Kazakhstan. All isolates were Gram-positive and formed endospores. Species identification was conducted by sequencing the gyrase B (gyrB) gene. The nucleotide sequences of the amplified gyrB gene regions were compared with those in the NCBI database, confirming that the isolates were native Bt strains with high homology to known Bt strains (99–100%). In addition, the strains were screened for the presence of genes encoding 11 different crystalline endotoxins using PCR with universal primer pairs. The PCR results showed the distribution frequencies of cry, cyt, and vip genes among the strains: cry1 (100%), vip3 (100%), cry2 (83.3%), cry4 (20%), and cyt1 (30%). PCR revealed diverse gene profiles among the Bt strains, with 5 distinct profiles identified. Regarding insecticidal activity, strains Bt8, Bt11, Bt26, and Bt28 demonstrated high pathogenicity, with mortality rates ranging from 97% to 100% against codling moth caterpillars, outperforming other Bt isolates.

Keywords: : biological control; insecticidal activity; local strains; identification; endotoxins profiling; gyrB; PCR-screening

Received: July 15, 2024; Revised: May 26, 2025; Accepted: May 30, 2025; Prepublished online: October 17, 2025 

Download citation

References

  1. Abo-Bakr A., Fahmy E.M., Badawy F., Abd El-latif A.O., Moussa S. (2020): Isolation and characterisation of the local entomopathogenic bacterium, Bacillus thuringiensis isolates from different Egyptian soils. Egyptian Journal of Biological Pest Control, 30: 1-9. Go to original source...
  2. Ammouneh H., Harba M., Idris E., Makee H. (2011): Isolation and characterisation of native Bacillus thuringiensis isolates from Syrian soil and testing of their insecticidal activities against some insect pests. Turkish Journal of Agriculture and Forestry, 35: 421-431. Go to original source...
  3. Baragamaarachchi R.Y., Samarasekera J.K.R.R., Weerasena O.V.D.S.J., Lamour K., Jurat-Fuentes J.L. (2019): Identification of a native Bacillus thuringiensis strain from Sri Lanka active against Dipel-resistant Plutella xylostella. PeerJ, 7: e7535. Go to original source... Go to PubMed...
  4. Ben-Dov E., Zaritsky A., Dahan E., Barak Z.E., Sinai R., Manasherob R., Margalith Y. (1997): Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology, 63: 4883-4890. Go to original source... Go to PubMed...
  5. Bravo A., Gill S.S., Soberón M. (2007): Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 423-435. Go to original source... Go to PubMed...
  6. Bravo A., Gill S.S., Soberón M., Gilbert L.I., Iatrou K. (2010): Bacillus thuringiensis mechanisms and use. In: Gilbert L.I., Kostas I., Gill S.S. (eds): Comprehensive Molecular Insect Science. Academic Press, Amsterdam: 175-206. Go to original source...
  7. Campanini E.B., Davolos C.C., Alves E.C.D.C., Lemos M.V.F. (2012): Characterisation of new strains of Bacillus thuringiensis for the control of important insect pests in agriculture. Bragantia, 71: 362-369. Go to original source...
  8. Donovan W.P., Engleman J.T., Donovan J.C., Baum J.A., Bunkers G.J., Chi D.J., Walters M.R. (2006): Discovery and characterisation of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Applied Microbiology and Biotechnology, 72: 713-719. Go to original source... Go to PubMed...
  9. El-Kersh T.A., Ahmed A.M., Al-Sheikh Y.A., Tripet F., Ibrahim M.S., Metwalli A.A. (2016): Isolation and characterisation of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (sl). Parasites & Vectors, 9: 1-14. Go to original source... Go to PubMed...
  10. Estruch J.J., Warren G.W., Mullins M.A., Nye G.J., Craig J.A., Koziel M.G. (1996): Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences, 93: 5389-5394. Go to original source... Go to PubMed...
  11. Ferrandis M.D., Juárez-Pérez V.M., Frutos R., Bel Y., Ferré J. (1999): Distribution of cryI, cryII and cryV genes within Bacillus thuringiensis isolates from Spain. Systematic and Applied Microbiology, 22: 179-185. Go to original source...
  12. Hassan A.A., Youssef M.A., Elashtokhy M.M.A., Ismail I.M., Aldayel M., Afkar E. (2021): Isolation and identification of Bacillus thuringiensis strains native of the Eastern Province of Saudi Arabia. Egyptian Journal of Biological Pest Control, 31: 1-11. Go to original source...
  13. Höfte H., Whiteley H. (1989): Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53: 242-255. Go to original source... Go to PubMed...
  14. Jain D., Sunda S.D., Sanadhya S., Nath D.J., Khandelwal S.K. (2017): Molecular characterisation and PCR-based screening of cry genes from Bacillus thuringiensis strains. Biotech, 7: 1-8. Go to original source... Go to PubMed...
  15. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018): MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547-1549. Go to original source... Go to PubMed...
  16. Lobo K.S., Soares-da-Silva J., Silva M.C., Tadei W.P., Polanczyk R.A., Pinheiro V.C.S. (2018): Isolation and molecular characterisation of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia, 62: 5-12. Go to original source...
  17. Nair K., Al-Thani R., Al-Thani D., Al-Yafei F., Ahmed T., Jaoua S. (2018): Diversity of Bacillus thuringiensis strains from Qatar as shown by crystal morphology, δ-endotoxins and cry gene content. Frontiers in Microbiology, 9: 708. Go to original source... Go to PubMed...
  18. Palma L., Muñoz D., Berry C., Murillo J., Caballero P. (2014): Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins, 6: 3296-3325. Go to original source... Go to PubMed...
  19. Patel K.D., Purani S., Ingle S.S. (2013): Distribution and diversity analysis of Bacillus thuringiensis cry genes in different soil types and geographical regions of India. Journal of Invertebrate Pathology, 112: 116-121. Go to original source... Go to PubMed...
  20. Porcar M., Juárez-Pérez V. (2003): PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiology Reviews, 26: 419-432. Go to original source... Go to PubMed...
  21. Rolle R.L., Ejiofor A.O., Johnson T.L. (2005): Determination of the plasmid size and location of d-endotoxin genes of Bacillus thuringiensis by pulse field gel electrophoresis. African Journal of Biotechnology, 4: 580-585. Go to original source...
  22. Salama H.S., Abd El-Ghany N.M., Saker M.M. (2015): Diversity of Bacillus thuringiensis isolates from Egyptian soils as shown by molecular characterisation. Journal of Genetic Engineering and Biotechnology, 13: 101-109. Go to original source... Go to PubMed...
  23. Salekjalali M., Barzegari A., Jafari B. (2012): Isolation, PCR detection and diversity of native Bacillus thuringiensis strains collection isolated from diverse Arasbaran natural ecosystems. World Applied Sciences Journal, 18: 1133-1138.
  24. Seifinejad A., Jouzani G.S., Hosseinzadeh A., Abdmishani C. (2008): Characterisation of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biological Control, 44: 216-226. Go to original source...
  25. Soares-da-Silva J., Pinheiro V.C.S., Litaiff-Abreu E., Polanczyk R.A., Tadei W.P. (2015): Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, 59: 1-6. Go to original source...
  26. Tamura K., Stecher G., Kumar S. (2021): MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38: 3022-3027. Go to original source... Go to PubMed...
  27. Thammasittirong A., Attathom T. (2008): PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. Journal of Invertebrate Pathology, 98: 121-126. Go to original source... Go to PubMed...
  28. Travers R.S., Martin P.A., Reichelderfer C.F. (1987): Selective process for efficient isolation of soil Bacillus spp. Applied and Environmental Microbiology, 53: 1263-1266. Go to original source... Go to PubMed...
  29. Van Frankenhuyzen K. (2009): Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology, 101: 1-16. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.