Plant Protect. Sci., X:X | DOI: 10.17221/148/2024-PPS

Allelopathic potential of Turnera subulata leaf extract on choy sum (Brassica chinensis var. parachinensis) via untargeted metabolomicsOriginal Paper

Nor Atirah Mohd Aridi ORCID...1, Nornasuha Yusoff ORCID...1, Muhd Arif Shaffiq Sahrir ORCID...1, Kamalrul Azlan Azizan ORCID...2
1 School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
2 Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia


Allelopathic plants release phytotoxic compounds that contribute to their invasiveness by suppressing nearby species. However, it remains unclear which exact mode of action (MOA) underlies the allelopathy. This study explores the allelopathic mechanisms of Turnera subulata on the recipient indicator plant choy sum using a metabolomics approach. Briefly, T. subulata leaf aqueous extracts (LAEs) at different concentrations (0.0, 0.1, 1.0, 10.0, 50.0, and 100.0 mg/mL) were sprayed at 100 mL/m2 on choy sum seedlings at the two to three leaf stage. After 21 days, the Soil Plant Analysis Development (SPAD) values and photosynthetic pigments of the exposed choy sum were measured, and their metabolites were subjected to a gas chromatography-mass spectrometer (GC-MS) analysis. The results revealed a 25% decrease in the SPAD, a reduction of 65% (chl a) and 71% (chl b), and a 45% reduction in the stomatal length at 100 mg/mL. A total of 15 significant metabolites (P < 0.05) with variables important for the projection score exceeding 1 (VIP > 1) were selected as the important biomarkers. These metabolites were identified as amino acids, carbohydrates, and fatty acids. The findings reveal the allelopathic potential of T. subulata and provide insights into the response of choy sum in response to the allelopathic activity of T. subulata LAEs.

Keywords: allelopathy; aqueous extract; GC-MS analysis; metabolites; pathway analysis

Received: August 27, 2024; Revised: April 24, 2025; Accepted: May 9, 2025; Prepublished online: December 4, 2025 

Download citation

References

  1. Al Hinai M.S., Rehman A., Siddique K.H., Farooq M. (2025): The role of trehalose in improving drought tolerance in wheat, Journal of Agronomy and Crop Science, 211: e70053. Go to original source...
  2. Andrade-Pinheiro J.C., Sobral de Souza C.E., Ribeiro D.A., Silva A.D.A., da Silva V.B., dos Santos A.T.L., Juno Alencar Fonseca V., de Macêdo D.G., et al. (2023): LC-MS analysis and antifungal activity of Turnera subulate Sm. Plants, 12: 415. Go to original source... Go to PubMed...
  3. Anzano A., Bonanomi G., Mazzoleni S., Lanzotti V. (2022): Plant metabolomics in biotic and abiotic stress: a critical overview. Phytochemistry Reviews, 21: 503-524. Go to original source...
  4. Beatriz G.-P., Lennart E., Johan T. (2014): Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). Journal of Chemometrics, 28: 623-632. Go to original source...
  5. Brito Filho S.G.D., Fernandes M.G., Chaves O.S., Chaves M.C.D.O., Araruna F.B., Eiras C., Leite J.R.D.S.D.A., Agra M.D.F., et al. (2014): Chemical constituents isolated from Turnera subulata Sm. and electrochemical characterization of phaeophytin b. Química Nova, 37): 603-609.Bruno L., Mircea D.M., Araniti F. (2025): Metabolomic insights into the allelopathic effects of Ailanthus altissima (Mill.) swingle volatile organic compounds on the germination process of Bidens pilosa (L.). Metabolites, 15: 12. Go to original source... Go to PubMed...
  6. Chai T.T., Wong F.C. (2012): Whole-plant profiling of total phenolic and flavonoid. Journal of Medicinal Plants Research, 6: 1730-1735.
  7. de Almeida L., Gaspar Y.M.D.S., Silva A.A.R., Porcari A.M., Lacerda J.J.D.J., Araújo F.D.D.S. (2024): Allelopathic effect and putative herbicidal allelochemicals from Jatropha gossypiifolia on the weed Bidens bipinnata. Acta Physiologiae Plantarum, 46: 61. Go to original source...
  8. Fu Y.H., Quan W.X., Li C.C., Qian C.Y., Tang F.H., Chen, X.J. (2019): Allelopathic effects of phenolic acids on seedling growth and photosynthesis in Rhododendron delavayi Franch. Photosynthetica, 57: 377-387. Go to original source...
  9. Gong Y., Song J., Palmer L.C., Vinqvist-Tymchuk M., Fillmore S., Toivonen P., Zhang, Z. (2021): Tracking the development of the superficial scald disorder and effects of treatments with diphenylamine and 1-MCP using an untargeted metabolomic approach in apple fruit. Food Chemistry:Molecular Sciences, 2: 100022. Go to original source... Go to PubMed...
  10. Gowtham H.G., Hariprasad P., Singh S.B., Niranjana S.R. (2016): Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonising beneficial bacteria. Biological Control, 101:123-129. Go to original source...
  11. Guo Q., Liu L., Barkla B.J. (2019): Membrane lipid remodeling in response to salinity. International Journal of Molecular Sciences, 20: 4264. Go to original source... Go to PubMed...
  12. Hasanuzzaman M., Mahmud J.A., Anee T.I., Nahar K., Islam M.T. (2018): Drought stress tolerance in wheat: Omics approaches in  understanding and enhancing antioxidant defense. In: Zargar M.S., Zargar M.Y. (eds): Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Singapore, Springer: 267-307. Go to original source...
  13. Henning P.M., Roalson E.H., Mir W., McCubbin A.G., Shore J.S. (2023): Annotation of the Turnera subulata (Passifloraceae) draft genome reveals the S-Locus evolved after the divergence of Turneroideae from Passifloroideae in a stepwise manner. Plants, 12: 286. Go to original source... Go to PubMed...
  14. Huang X., Zhu Y., Su W., Song S., Chen R. (2024): Widely-targeted metabolomics and transcriptomics identify metabolites associated with flowering regulation of Choy Sum. Scientific Report, 14: 10682. Go to original source... Go to PubMed...
  15. Ingrisano R., Tosato E., Trost P., Gurrieri L., Sparla F. (2023): Proline, cysteine and branched-chain amino acids in abiotic stress response of land plants and microalgae. Plants (Basel), 12: 3410. Go to original source... Go to PubMed...
  16. Jahangir M., Abdel-Farid I.B., Kim H.K., Choi Y.H., Verpoorte R. (2009): Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environmental and Experimental Botany, 67: 23-33. Go to original source...
  17. Katiyar P., Pandey N., Keshavkant S. (2022): Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress, 5: 100089. Go to original source...
  18. Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., Ismail M.A.S., Babar M.A. (2020): Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 52: 355-363. Go to original source...
  19. Li Z., Cheng B., Zhao Y., Luo L., Zhang Y., Feng G., Han L., Peng Y., et al. (2022): Metabolic regulation and lipidomic remodelling in relation to spermidine-induced stress tolerance to high temperature in plants. International Journal of Molecular Sciences, 23: 12247. Go to original source... Go to PubMed...
  20. Liu L., Lin L. (2020): Effect of heat stress on Sargassum fusiforme leaf metabolome. Journal of Plant Biology, 63: 229-241. Go to original source...
  21. Liu X., Ma D., Zhang Z., Wang S., Du S., Deng X., Yin L. (2019): Plant lipid remodeling in response to abiotic stresses. Environmental and Experimental Botany, 165: 174-184. Go to original source...
  22. Lichtenthaler H.K., Wellburn A.R. (1983): Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transaction, 11: 591-592. Go to original source...
  23. Luz J.R.D.D., Barbosa E.A., Nascimento T.E.S.D., Rezende  A.A.D., Ururahy M.A.G., Brito A.D.S., Araujo-Silva G., López J.A., et al. (2022): Chemical characterization of flowers and leaf extracts obtained from Turnera subulata and their immunomodulatory effect on LPS-Activated RAW 264.7 macrophages. Molecules, 27: 1084. Go to original source... Go to PubMed...
  24. Mashabela M.D., Masamba P., Kappo A.P. (2023). Applications of metabolomics for the elucidation of abiotic stress tolerance in plants: A special focus on osmotic stress and heavy metal toxicity. Plants, 12: 269 Go to original source... Go to PubMed...
  25. Mushtaq W., Ain Q., Siddiqui M.B., Hakeem K.R. (2019). Cytotoxic allelochemicals induce ultrastructural modifications in Cassia tora L. and mitotic changes in Allium cepa L.: A weed versus weed allelopathy approach. Protoplasma, 256: 857-871. Go to original source... Go to PubMed...
  26. Nawaz M., Hassan M.U., Chattha M.U., Mahmood A., Shah A.N., Hashem M., Qari S.H. (2022): Trehalose: A promising osmo-protectant against salinity stress - physiological and molecular mechanisms and future prospective. Molecular Biology Reports, 49: 11255-11271. Go to original source... Go to PubMed...
  27. Ning X., Lin M., Huang G., Mao J., Gao Z., Wang X. (2023): Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 14: 1190768. Go to original source... Go to PubMed...
  28. Oshunsanya S.O., Nwosu N.J., Li Y. (2019): Abiotic stress in agricultural crops under climatic conditions. In: Sustainable Agriculture, Forest and Environmental Management, Singapore, Springer: 71-100. Go to original source...
  29. Raval S.S., Mahatma M.K., Chakraborty K., Bishi S.K., Singh  A.L., Rathod K.J., Jadav J.K., Sanghani J.M., Mandavia M.K., Gajera H.P., Golakiya B.A. (2018): Metabolomics of groundnut (Arachis hypogaea L.) genotypes under varying temperature regimes. Plant Growth Regulator, 84: 493-505. Go to original source...
  30. Saccenti E., Hoefsloot H.C.J., Smilde A.K., Westerhuis J.A., Hendriks M.M.W.B. (2014): Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10: 361-374. Go to original source...
  31. Sahrir M.A.S., Yusoff N., Azizan K.A., Aridi N.A.M. (2024): Assessing the allelopathic effect of Chrysopogon zizanioides (L.) Roberty root methanolic extract on Brassica rapa subsp. chinensis var. parachinensis using an untargeted metabolomic approach. Chilean Journal of Agricultural Research, 84: 154-165. Go to original source...
  32. Saravanan M., Senthilkumar P., Chinnadurai V., Murugesan Sakthivel K., Rajeshkumar R., Pugazhendhi A. (2020): Antiangiogenic, anti-inflammatory and their antioxidant activities of Turnera subulata Sm. (Turneraceae). Process Biochemistry, 89: 71-80. Go to original source...
  33. Saravanan M., Senthilkumar P., Kalimuthu K., Chinnadurai V., Vasantharaj S., Pugazhendhi A. (2018). Phytochemical and pharmacological profiling of Turnera subulata Sm., a vital medicinal herb. Industrial Crops and Products, 124: 822-833. Go to original source...
  34. Sharma P., Goyal A., Ahlawat Y.K., Lakra N., Zaid A., Siddique K.H. (2023). Drought and heat stress mediated activation of lipid signaling in plants: a critical review. Frontiers in Plant Science, 14: 1216835. Go to original source... Go to PubMed...
  35. Sun X., Han G., Meng Z., Lin L., Sui N. (2019): Roles of malic enzymes in plant development and stress responses. Plant Signaling and Behavior, 14. Go to original source...
  36. Szewczyk K., Bogucka-Kocka A., Vorobets N., Grzywa-Celiñska A., Granica, S. (2020): Phenolic composition of the leaves of Pyrola rotundifolia L. and their antioxidant and cytotoxic activity. Molecules, 25: 1749. Go to original source... Go to PubMed...
  37. Tashim D.N.N.A.Z., Md P., Sukri R.S., Jaafar S.M., Metali F. (2021): Allelopathic effects of Mangifera indica leaves on the growth performance of Brassica rapa 'Chinensis' (Pak choi). Research on Crops, 22: 564-575. Go to original source...
  38. Wang X., Wang J., Zhang R., Huang Y., Feng S., Ma X., Zhang Y., Sikdar A., et al. (2018): Allelopathic effects of aqueous leaf extracts from four shrub species on seed germination and initial growth of Amygdalus pedunculata Pall. Forests, 9: 711. Go to original source...
  39. Wishart D.S., Cheng L.L., Copié V., Edison A.S., Eghbalnia H.R., Hoch J.C. (2022): NMR and metabolomics - A roadmap for the future. Metabolites, 12: 678. Go to original source... Go to PubMed...
  40. Xiao X., Ma Z., Zhou K., Niu Q., Luo Q., Yang X., Chu X., Shan G. (2025): Elucidating the underlying allelopathy effects of Euphorbia jolkinii on Arundinella hookeri using metabolomics profiling. Plants, 14: 123. Go to original source... Go to PubMed...
  41. Yaakob N., Yusoff N., Azizan K.A., Azemin A., Mahmud K., Che Lah M.K. (2020): Assessment on allelopathic activity and potential allelochemicals of Turnera subulata Sm. Bioscience Research, 15: 123-145.
  42. Yu L., Zhou C., Fan J., Shanklin J., Xu C. (2021): Mechanisms and functions of membrane lipid remodeling in plants. The Plant Journal, 107: 37-53. Go to original source... Go to PubMed...
  43. Zhu X., Yi Y., Huang L., Zhang C., Shao H. (2021).: Metabolomics reveals the allelopathic potential of the invasive plant Eupatorium adenophorum. Plants, 10: 1473. Go to original source... Go to PubMed...
  44. Zou L., Tan W.K., Du Y., Lee H.W., Liang X., Lei J., Striegel L., Weber N., et al. (2021): Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages: Microgreen, seedling and adult plant. Food Chemistry, 357: 129535. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.