REVIEW

Case Study of Host-Pathogen Interaction: Tomato (Lycopersicon spp.) - Tomato Powdery Mildew (Oidium lycopersici)

ALEŠ LEBEDA and BARBORA MIESLEROVÁ

Palacký University Olomouc, Faculty of Science - Department of Botany, Olomouc, Czech Republic

Abstract

LEBEDA A., MIESLEROVÁ B. (2000): Case Study of Host-Pathogen Interaction: Tomato (Lycopersicon spp.) - Tomato Powdery Mildew (Oidium lycopersici). Plant Protec. Sci., 36: 156-162.

The present paper tries to demonstrate progress and gap of knowledge in plant pathology through the tomato – tomato powdery mildew host-pathogen interaction as a model. Tomato powdery mildew (Oidium lycopersici) has caused serious damages on glasshouse tomato (Lycopersicon esculentum) crops during the last approximately 15 years. Although the absence of teleomorph stage did not allow exact taxonomic classification of the pathogen, comparative morphological studies using light and scanning electron microscopy revealed that Oidium lycopersici might be included to the Erysiphe sect. Erysiphe (close to Erysiphe aquilegiae var. ranunculi). Effective resistance sources to O. lycopersici were found mainly in wild Lycopersicon hirsutum and L. pennellii (confirmed by testing with four different O. lycopersici isolates). Available information on the pathogenic variability of O. lycopersici is given; host range experiments revealed considerable differences in ability of different O. lycopersici isolates to infect cucumber and tobacco, postulating existence of different pathotypes |formae specialis| of pathogen. Similarly, some Lycopersicon spp. genotypes showed remarkable differential reactions with pathogen isolates, indicating existence of different pathogen races. Information regarding recently detected mechanisms and basis of resistance in Lycopersicon spp. are also mentioned. However, more research based on classical, biochemical and molecular approaches is also needed.

Key words: *Lycopersicon* spp.; *Oidium lycopersici*; distribution; taxonomical position; host range; pathogenic variability; resistance sources; basis of resistance; mechanisms of resistance

Recently, phytopathology as a scientific discipline, has become more and more structuralized and specialized. However, in most cases the basic and complex information on pathogenic microorganisms and their interactions with the host plants, has been missing. One of the examples representing this situation is the interaction between tomato (*Lycopersicon* spp.) and tomato powdery mildew (*Oidium lycopersici*). In this paper we want to demonstrate a considerable progress of knowledge on this pathogen during the last decade, but also gaps of basic information important for the better understanding of the host-pathogen interaction.

Geographical Occurrence and Distribution of the Pathogen

Although the first record on the occurrence of tomato powdery mildew (*Oidium lycopersici*) came from Australia in the last century (COOKE & MASSEE 1888), the pathogen has caused serious damages on glasshouse tomato crops during the last approximately 15 years. Firstly causing strong epidemics in the Netherlands in 1986, the pathogen has spread throughout Europe. Informations concerning year of the first occurrence of the pathogen in European countries are shown in Fig. 1. Since 1990s its

^{*}This research was partly supported by the Czech Ministry of Agriculture (Praha) from the "National Programme of Genepool Conservation of Microorganisms and Small Animals of the Economic Importance" and by the project "Stress and Pathological Biology, Biochemistry and Bioenergetics of Plants" (MSM 153100010, Czech Ministry of Education, Youth and Sports, Praha).

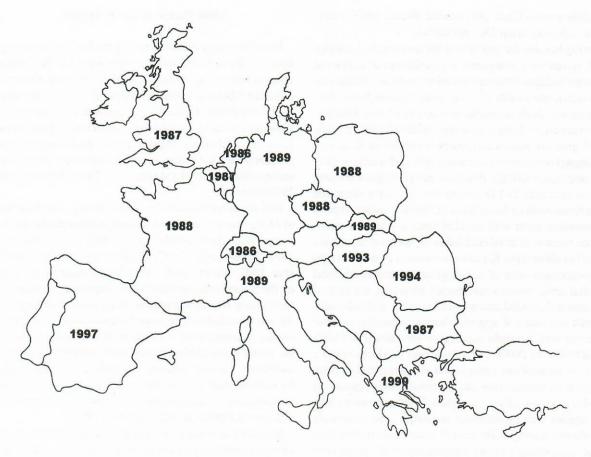


Fig. 1. A map of the first records of Oidium lycopersici occurrence in Europe

occurrence has been recorded also in Russia (IGNATOVA et al. 1997), India (KUMAR et al. 1995) as well as in Canada (BÉLANGER & JARVIS 1994), USA (ARREDONDO et al. 1996; KARASEVICZ & ZITTER 1996; SMITH et al. 1997; WHITE et al. 1997; PERNEZNY & SONODA 1998), Brasil (BOITEUX, 1994) and Venezuela (SANABRIA DE ALBARRACÍN et al. 1994)). Nevertheless, the reason of its very fast continental and intercontinental spreading is not known.

In the former Czechoslovakia, *Oidium lycopersici* was recorded on tomato for the first time in 1988 (LEBEDA & ROD 1990). Since that time, regular occurrence of spontaneous infection on leaves of glasshouse-grown tomatoes has been observed in several localities in the Czech Republic (LEBEDA & HALČINOVÁ 1997; LEBEDA *et al.* 1999).

Morphological Characteristics and its Possible Taxonomical Position of Oidium lycopersici

Three powdery mildew species have so far been reported on tomato. The first, Leveillula taurica (Lév.) Arnaud, 1921 (Oidiopsis taurica [Lév.] Salmon) occurs only in warmer regions (PALTI 1988), and is easily distinguished from other powdery mildews by the presence of branched conidiophores growing through the stomata. Sphaerothe-

ca fusca (Fr.) Blumer, 1933, emend. Braun, 1995, syn. Sphaerotheca fuliginea (Schlecht. ex Fr.) Poll, one of the main powdery mildews of Cucurbitaceae, has also been mentioned on tomatoes from the Netherlands (STOLK & COOLS 1983) and Bulgaria (GEORGIEV & ANGELOV 1993). This species is distinguished from other powdery mildews by the presence of fibrosin bodies in conidia. The third species, Oidium spp. (including O. lycopersici) is a different species both morphologically and biologically. Until now, no teleomorph stage of O. lycopersici, has been found thus the taxonomical position of this pathogen is still unclear (MIESLEROVÁ & LEBEDA 1999a). Moreover, the attempt to initiate formation of cleistothecia under laboratory conditions using different isolates of O. lycopersici under various temperature conditions, has failed (MIESLEROVÁ & LEBEDA, unpubl.).

However, on the base of morphological characteristics of its anamorphic stage (shape of conidia, conidiophores and absence of fibrosin bodies), the pathogen was referred as possibly belonging to genus *Erysiphe* (FLETCHER *et al.* 1988, KISS *et al.* 1999). The fact, that *O. lycopersici* can also infect cucurbitaceous species (FLETCHER *et al.* 1988; CORBAZ 1993; LEBEDA & MIESLEROVÁ 1999) and that the occurrence of *Erysiphe orontii* on *Solanaceae* was confirmed (HAMMARLUND 1945; BRAUN 1987, 1995), suggested that *O. lycopersici* may be related to

Erysiphe orontii Cast. 1851 emend. Braun, 1987 (= Erysiphe cichoracearum DC. pro parte).

Trying to solve the problem of the taxonomical position of O. lycopersici, comparative morphological studies of fourteen isolates of tomato powdery mildew (Oidium lycopersici), one isolate of each Sphaerotheca fusca, Erysiphe orontii (both cucumber powdery mildews), Erysiphe cichoracearum (lettuce powdery mildew) and Erysiphe aquilegiae var. ranunculi (powdery mildew of Ranunculus lingua) were carried out using light and scanning electron microcopy (SEM). Based on morphological features we can conclude that O. lycopersici is clearly separated from Sphaerotheca fusca (lack of fibrosin bodies, type of germination, outer wall conidial pattern, size of conidiophores, number of distal conidial cells, appressorial shape), as well as either from E. cichoracearum or E. orontii (type of germination, size of conidiophores, number of distal conidial cells, appressorial shape). However, the type of germination, conidial arrangement, number of distal conidial cells and shape of appressorium were similar to those observed with Erysiphe aquilegiae var. ranunculi (MIE-SLEROVÁ et al. 2000b). O. lycopersici produces conidia singly (Pseudoidium group), and this separated it from Erysiphe cichoracearum and E. orontii, which produced conidia in chains (Euoidium group). Other powdery mildew species with pseudoidium anamorph type (Uncinula and Microsphaera) differ from O. lycopersici in their host range, suggesting a closer relationship of O. lycopersici to Erysiphe sect. Erysiphe (BRAUN 1995; COOK et al. 1998), and to Erysiphe aquilegiae var. ranunculi (Fig. 2).

Nevertheless, to solve clearly the taxonomical position of *O. lycopersici*, more research based on classical and molecular approaches is required.

Host Range of the Pathogen

From host range experiments it is evident, that no susceptible species to *O. lycopersici* were found in the families *Brassicaceae*, *Asteraceae*, *Fabaceae* and *Poaceae* (ARREDONDO *et al.* 1996; WHIPPS *et al.* 1998). Surprisingly, in some distant families, e.g. *Apocynaceae*, *Asteraceae*, *Campanulaceae*, *Crassulaceae*, *Cistaceae*, *Dipsacaceae*, *Linaceae*, *Malvaceae*, *Papaveraceae*, *Pedaliaceae*, *Scrophulariaceae*, *Valerianaceae* and *Violaceae*, there were susceptible species (LEMAIRE *et al.* 1999; WHIPPS *et al.* 1998) detected.

In Solanaceae, besides Lycopersicon spp., the main host of O. lycopersici, resistant as well as susceptible species were found (ARREDONDO et al. 1996; FLETCHER et al. 1988; HUANG et al., 1997; IGNATOVA et al. 1997; SMITH et al. 1997; WHIPPS et al. 1998). In our experiments, most of the Solanaceae species tested expressed resistant or moderately resistant reactions. High level of susceptibility was recorded only in some Solanum species (S. capsicoides, S. jamaicense, S. laciniatum, S. lycopersicoides). As partly susceptible species were considered Lycium barbatum, Lycium chinense, Physalis alkekengi, Physalis minima, Solanum aethiopicum, S. aviculare, S. chenopodioides, S. dulcamara, S. incanum, S. nigrum, S. villosum (LEBEDA & MIESLEROVÁ 1999).

In some Cucurbitaceae species (Cucumis melo, C. sativus, Cucurbita spp.) the development of powdery mildew symptoms and sporulation were recorded, and only Citrullus lanatus could be considered as resistant or moderately susceptible (LEBEDA & MIESLEROVÁ 1999). Interestingly, the most controversial results are related to the ability of different O. lycopersici isolates to infect both cucumber and tobacco (CORBAZ 1993; FLETCHER et al.

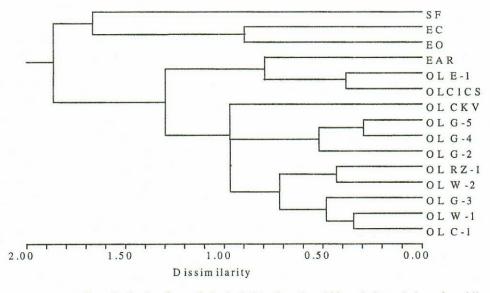


Fig. 2. Dendrogram constructed on the basis of morphological data (length, width and shape index of conidia; presence of fibrosin bodies; length of conidiophores; length and width of conidiophore foot-cell; the number of distal conidial cells; germination type and appressorium shape) of O. lycopersici (OL), Erysiphe aquilegiae var. ranunculi (EAR), E. cichoracearum (EC), E. orontii (EO) and Sphaerotheca fusca (SF) showing similarity between isolates (according to MIESLEROVÁ et al. 2000b)

Table 1. Records on the ability of different Oidium lycopersici isolates to infect some plant species

Origin	Report	Cucumis sativus	Nicotiana tabacum	Solanum melongena	
CZ	LEBEDA & MIESLEROVÁ (1998)	+			
F	LEMAIRE et al. (1999)	+	+	_	
HU	Kiss (1996)		_	+ nd	
CH	CORBAZ (1993)	+	+	nd	
NL	HUANG et al. (1998a, b)	_	+	+	
RUS	IGNATOVA et al. (1997)	+	+	nd	
JK	FLETCHER et al. (1988)	-	+	+	
UK	WHIPPS et al. (1998)	+	+	+	
USA	LAMONDIA et al. (1999)	nd	+	T	

⁺ susceptible; - resistant; nd - not determined

1988; IGNATOVA et al. 1997; WHIPPS et al. 1998). Thus, some authors confirmed successful transfer of tomato powdery mildew onto cucumber and tobacco, while others did not (Table 1). These results suggest that cucumber and tobacco may be potentially used for differentiation of O. lycopersici pathotypes.

From the experimental data mentioned above it is evident that there is a lot of confusion regarding host range of *O. lycopersici* which must be solved.

Sources of Resistance against O. lycopersici among Wild Lycopersicon Species

Some recent results showed that nearly all cultivars of Lycopersicon esculentum released till 1990s were highly susceptible to O. lycopersici (KOZIK 1993; LINDHOUT et al. 1994a), nevertheless there were differences in the level of susceptibility (LEMAIRE et al. 1999). Therefore, the screening of wild Lycopersicon spp. as a potential resistance sources was initiated. So far, the most valuable donors of resistance have been found in L. hirsutum, L. chilense, L. parviflorum, L. peruvianum and L. pennellii (IGNATOVA et al. 1997; LINDHOUT et al. 1994a; MILOTAY & DORMANNS-SIMON 1997), and this was also con-

firmed in our experiments (MIESLEROVÁ & LEBEDA 1998; MIESLEROVÁ et al. 2000a). However, L. esculentum (L. esc. var. cerasiforme, L. esc. var. piriforme) and L. pimpinellifolium (the closest relatives of cultivated tomato) generally expressed high susceptibility to O. lycopersici (CICCARESE et al. 1998; KUMAR et al. 1995; MIESLEROVÁ & LEBEDA 1998; MIESLEROVÁ et al. 2000a). The results obtained well coincide with RFLPs that showed genetic distance among populations and species of the genus Lycopersicon (MILLER & TANKSLEY 1990).

More detailed research is urgently needed on the variability of resistance, first of all from the viewpoint of pathogenicity differences to *O. lycopersici*.

Pathogenic Variability of Oidium lycopersici

Limited information is available on pathogenic variability of O. lycopersici. Although host range studies revealed considerable differences, mainly in the ability of various O. lycopersici isolates to infect representatives of the Cucurbitaceae family, postulating the existence of different pathotypes [formae specialis] of the pathogen (HUANG et al. 1998b; MIESLEROVÁ & LEBEDA 1999a).

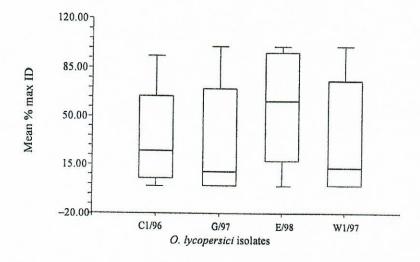


Fig. 3. Comparison of four *O. lycopersici* isolates originating from the Czech Republic (C1/96), Germany (G/97), the Netherlands (W1/97) and England (E/98) based on % max ID values obtained after inoculation with 35 *Lycopersicon* spp. genotypes

However, till now no scientific work was aimed to study the pathogenic variability of *O. lycopersici* at race specialization level (differences in responses of several genotypes of one species and/or related species). This is probably because nearly all recent tomato cultivars are considered as highly susceptible, and thus not possible for differentiation of *O. lycopersici* isolates. In the Netherlands, the application of AFLP markers allowed to differentiate four *O. lycopersici* isolates (HUANG *et al.* 1998b) and the results revealed at least two different patterns related to two types of *O. lycopersici* isolates existing in the Netherlands. However, level of pathogenicity was not assessed in this case.

In our recent experiments, the pathogenicity of O. lycopersici isolates originating from the Czech Republic, Germany, the Netherlands and England were compared using data (percentage of maximal infection degree (% max ID) from inoculation experiments on 35 (resp. 60) accessions of wild Lycopersicon species. The Fig. 3. showed large variability within the tested isolates. The English isolate of O. lycopersici was found to have specific and high pathogenicity (Fig. 3). In other experiments, the value of some germplasm of wild Lycopersicon spp. as a resistance sources (L. hirsutum, L. pennellii) was confirmed. Some Lycopersicon spp. genotypes, which showed remarkable differential reactions with pathogen isolates, were proposed as members of a preliminary differential set (Table 2).

Table 2. A list of *Lycopersicon* spp. accessions recommended for use in a preliminary differential set

Lycopersicon	Accession	O. lycopersici isolate/response				
spp.		C1/96	G/97	W1/97	E/98	
L. esculentum	cv. Amateur	S	S	S	S	
L. hirsutum	LA 94	S	S	R	M	
L. hirsutum	LA 1738	R	R	R	S	
L. hirsutum	LA 1731	R	R	R	M	
L. hirsutum f. glabratum	LA 2128	R	R	R	R	

R - resistant; M - moderately susceptible; S - susceptible

Nevertheless, to perform a more exact determination of these interactions we will need more experimental data at population, individual, biochemical and molecular level.

Genetic Basis of Resistance

Only few experiments tried to study the genetic background of resistance to *O. lycopersici* in wild *Lycopersicon* spp. It was suggested that monogenic incompletely dominant genes, recessive genes, and even polygenes could be responsible for resistance (BEEK *et al.* 1994; CICARESSE *et al.* 1998; HUANG *et al.* 1998a; LINDHOUT *et al.* 1994b; MIESLEROVÁ & LEBEDA 1999a). In our

experiments only a few of tested *Lycopersicon* spp. genotypes matched typical race-specific resistance, which was characterized by nearly complete resistant reaction to three of the tested *O. lycopersici* isolates and, by high susceptibility to the English isolate. In most cases results evoked the presumption that resistance is of quantitative type (no absolute resistance) controlled by polygenes. In fact, the experiences mentioned above suggest that this pathosystem could be controlled by a gene-complex, including polygenes together with major genes.

Further more classical and molecular genetic research is required to get more detailed information on this host-pathogen genetics.

Resistance Mechanisms in Lycopersicon spp. to O. lycopersici

Only limited information is still available on the resistance mechanism in *Lycopersicon* spp. — *Oidium lycopersici* interaction. LINDHOUT *et al.* (1994a) described that resistance to *O. lycopersici* in wild *Lycopersicon* species is macroscopically characterized by a very low amount of infection, a strongly restricted mycelial growth and lack of sporulation. Histological studies of the resistance mechanism in plants infected by *O. lycopersici* were reported by HUANG *et al.* (1997, 1998a). They found that prevailing, but often not completely effective resistance mechanism occurred in *Lycopersicon* spp. as a hypersensitive (necrotic) response.

For studying the infection process of O. lycopersici, histological and biochemical research (changes in activities of peroxidase and catalase) were carried out in ten Lycopersicon spp. genotypes (including wild Lycopersicon spp. and two "oidium resistant" tomato lines). The experiments showed that plant genotype did not efficiently inhibited conidium germination. However, in early stages of O. lycopersici infections significant differences in germ tube development were recorded in resistant and susceptible accessions. The main resistant reaction detected was hypersensitive (necrotic) response, which was, however, often followed by pathogen development. In addition, the existence of different resistant mechanisms not based on hypersensitivity were confirmed as well. Increased peroxidase activity during pathogenesis was detected mainly in moderately resistant accessions and closely correlated with the occurrence of cell necrosis (hypersensitivity). Because of the fact, that catalase can be considered as a substrate competitor of peroxidase, increasing in their activity was detected in highly resistant accessions, in which the peroxidase changes and the occurrence of hypersensitivity were limited (LEBEDA et al. 1999; MIESLEROVÁ & LEBEDA 1999b).

Future Prospects

Present survey has shown that our knowledge on the interaction *Lycopersicon* spp. – O. *lycopersici* is still lim-

ited. The intraspecific variation of O. lycopersici and the genetics of host-pathogen system represents "gap of knowledge" from the viewpoint of both theoretical and practical aspects. Sufficient amount of specified plant material and further investigations with a range of different and well-specified O. lycopersici isolates (races) could help in better understanding of these interactions. Furthermore, detailed characterization of resistance background in the host germplasm can improve their effectivenes as sources of resistance suitable for incorporating into tomato cultivars.

Acknowledgements: The authors acknowledge the fruitful remarks of Prof. Dr. F. VIRÁNYI to the earlier draft of the manuscript.

References

- ARREDONDO C. R., DAVIS R. M., RIZZO D. M., STAHMER R. (1996): First report of powdery mildew of tomato in California caused by an *Oidium* sp. Plant Dis., 80: 1303.
- BEEK J. G., PET G., LINDHOUT P. (1994): Resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome 6. Theor. Appl. Genet., 89: 467-473.
- BÉLANGER R. R., JARVIS W. R. (1994): Occurrence of powdery mildew (*Erysiphe* sp.) on greenhouse tomatoes in Canada. Plant Dis., 78: 640.
- BOITEUX L. S. (1994): Powdery mildew of Potato caused by Erysiphe cichoracearum in Brasil. Plant Dis., 78: 830.
- BRAUN U. (1987): The monograph of the Erysiphales (powdery mildews). Berlin-Stuttgart, Germany, J. Cramer.
- BRAUN U. (1995): The powdery mildews (*Erysiphales*) of Europe. Jena, Gustav Fisher Verlag.
- CICCARESE F., AMENDUNI M., SCHIAVONE D., CIRULLI M. (1998): Occurrence and inheritance of resistance to powdery mildew (*Oidium lycopersici*) in *Lycopersicon* species. Plant Pathol., 47: 417–419.
- COOK R. T. A, INMAN A. J., BILLINGS C. (1998): Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycol. Res., 101: 975–1002.
- COOKE M. C., MASSEE G. (1888): Australasian fungi. Grevillea, 16: 114.
- CORBAZ R. (1993): Extension d un oidium des Cucurbitacées (*Erysiphe cichoracearum*) á la tomate. Rev. suisse Vitic. Arboric. Hortic., 25: 389-391.
- FLETCHER J. T., SMEWIN B. J., COOK R. T. A. (1988): Tomato powdery mildew. Plant Pathol., 37: 594-598.
- GEORGIEV P., ANGELOV D. (1993): Reaction of different tomato varieties to powdery mildew causal agent - Sphaerotheca fuliginea f. lycopersicum (Cooke & Massee). In: Proc. XIIth EUCARPIA Meet. Tomato Genetics and Breeding, Plovdiv, Bulgaria: 55-58.
- HAMMARLUND C. (1945): Beiträge zur Revision einiger imperfekten Mehltau-Arten. Erysiphe polyphaga nov. sp. (Vorläufige Mitteilung). Botaniska Notiser, 1: 101–108.

- HUANG C., BIESHEUVEL J., GROOT T., NIKS R., LINDHOUT P. (1997): Resistance mechanisms to *Oidium lycopersicum*. Abstr. XIIIth Meet. EUCARPIA, Tomato Working Group, Jerusalem, Israel: 54.
- HUANG C., GROOT T., MEIJER-DEKENS F., NIKS R., LIND-HOUT P. (1998a): Hypersensitivity is the major mechanism of resistance to powdery mildew (*Oidium lycopersicum*) in *Lycopersicon* species. Eur. J. Plant Pathol., **104**: 399-407.
- HUANG C. C., LINDHOUT P., NIKS R. E. (1998b): Genetic differences in powdery mildews prevailing recently on tomato. 7th Int. Congr. Plant Pathol., Edinburg, 9–16 August 1998; Offered Papers, Abstracts Vol. 2 (Themes 1 and 2), 2.2.18.
- IGNATOVA S. I., GORSHKOVA N. S., TERESHONKOVA T. A. (1997): Powdery mildew of tomato and sources of resistance. Abstr. XII. Meet. EUCARPIA, Tomato Working Group, Jerusalem, Israel: 79.
- KARASEVICZ D. M., ZITTER T. A. (1996): Powdery mildew occurrence on greenhouse tomato plants in New York. Plant Dis., 80: 709.
- KISS L. (1996): Occurrence of new powdery mildew fungus (*Erysiphe* sp.) on tomatoes in Hungary. Plant Dis., **80**: 224.
- KISS L., COOK R. T. A., SAENZ G. S., PASCOE I., BARDIN M., NICOT P. C., HUGHES K., ROSSMAN A. Y. (1999): How many *Erysiphe*-like anamorphs are responsible for the recent outbreak of tomato powdery mildew? In: First Int. Powdery Mildew Conf., Avignon, 29. 8–3. 9. 1999: 4.
- KOZIK E. (1993): Resistance to powdery mildew "Oidium lycopersici" in tomato. Tomato Genet. Coop. Rep. 43: 26–27.
- KUMAR V., SINGH B., SUGHA S. K., BASANDRAI A. K. (1995): Sources of resistance to tomato powdery mildew. Ind. J. Mycol. Plant Pathol., 25: 172-174.
- LAMONDIA J. A., SMITH V. L., DOUGLAS S. M. (1999): Host range of *Oidium lycopersicum* on selected Solanaceous species in Connecticut. Plant. Dis., 83: 341-344.
- LEBEDA A., HALČINOVÁ B. (1997): Padlí (Oidium spp.) na rodu Lycopersicon. Ochr. Rostl., 33: 297–310.
- LEBEDA A., MIESLEROVÁ B. (1999): Identification, occurrence and host range of tomato powdery mildew (*Oidium lycopersici*) in the Czech Republic. Acta Phytopathol. Entomol. Hung., 34: 13–25.
- LEBEDA A., MIESLEROVÁ B., LUHOVÁ L. (1999): Resistance mechanisms of wild *Lycopersicon* species against powdery mildew (*Oidium lycopersici*). 2. Symp. Phytomedizin und Pflanzenschutz im Gartenbau. Wien, 27.–30. 9. 1999: 111–113.
- LEBEDA A., ROD J. (1990): Padlí rajčat nová nebezpečná choroba. Zahradnictví, 15: 313–315.
- LEMAIRE J. M., CONUS M., BURGERJON A., MAS P. (1999): Oidium lycopersicum un nouvel oidium de la tomate. PHM Revue Horticole, 402: 21–24.
- LINDHOUT P., PET G., BEEK H. (1994a): Screening wild Lycopersicon species for resistance to powdery mildew (Oidium lycopersicum). Euphytica, 72: 43-49.
- LINDHOUT P., BEEK H., PET G. (1994b): Wild Lycopersicon species as sources for resistance to powdery mildew (Oidium

- lycopersicum): Mapping of resistance gene Ol-1 on chromosome 6 of Lycopersicon hirsutum. Acta Hortic., 376: 387-394.
- MIESLEROVÁ B., LEBEDA A. (1998): Sources of resistance to *Oidium lycopersicum* among wild *Lycopersicon* species. In: Proc. Conf. Agriculture and Environment. Bled, Slovenia, March 12–13: 313–317.
- MIESLEROVÁ B., LEBEDA A. (1999a): Taxonomy, distribution and biology of the tomato powdery mildew. J. Plant Dis. Protec., 106: 140–157.
- MIESLEROVÁ B., LEBEDA A. (1999b): Variability in the early development of tomato powdery mildew (*Oidium lycopersici*) in the host and non-host species. In: First Int. Powdery Mildew Conf., Avignon, 29.8–3.9. 1999: 82.
- MIESLEROVÁ B., LEBEDA A., CHETELAT R. T. (2000a): Variation in response of wild *Lycopersicon* and *Solanum* spp. against tomato powdery mildew (*Oidium lycopersici*). J. Phytopathol., 148: 303–311.
- MIESLEROVÁ B., LEBEDA A., KENNEDY, R., NOVOTNÝ R. (2000b): Comparative morphological studies on tomato powdery mildew (*Oidium lycopersici*). Ann. Appl. Biol. (submitted).
- MILLER J. C., TANKSLEY S. D. (1990): RFLP analysis of phylogenetic relationships and genetic variation in the genus *Lycopersicon*. Theor. Appl. Genet., **80**: 437–448.

- MILOTAY P., DORMANNS-SIMON E. (1997): Powdery mildew on tomato in Hungary and some possible sources of resistance. In: Abstr. XII. Meet. EUCARPIA, Tomato Working Group. Jerusalem, Israel: 60.
- PALTI J. (1988): The *Leveillula* mildews. Bot. Rev., 54: 423-535.
- PERNEZNY K., SONODA R. M. (1998): Powdery mildew of field-grown tomato in Florida. Plant Dis., 82: 262–263.
- SANABRIA DE ALBARRACÍN, ALBARRACÍN M., MENDOZA A. (1994): Mildiú polvoriento del ajo Allium sativum L., tomate Lycopersicon esculentum Mill., y repollo de bruselas Brassica oleracea L. var. gemmifera Zenker. Ernstia, 4: 107-116.
- SMITH V. L., DOUGLAS S. M., LAMONDIA J. A. (1997): First report of powdery mildew of tomato caused by an *Erysiphe* sp. in Connecticut. Plant Dis., **81**: 229.
- STOLK J. A., COOLS M. M. (1983): Early hothouse tomato cultivars: resistance to powdery mildew is definite. Groenten & Fruit, 39: 37–39.
- WHIPPS J. M., BUDGE S. P., FENLON J. S. (1998): Characteristics and host range of tomato powdery mildew. Plant Pathol., 47: 36–48.
- WHITE J. F., JOHNSTON JR. S. A., WANG C. L., CHIN C. K. (1997): First report of powdery mildew in greenhouse-grown tomatoes in New Yersey. Plant Dis., 81: 227.

Souhrn

LEBEDA A., MIESLEROVÁ B. (2000): Studium interakce hostitel – patogen: rajče (Lycopersicon spp.) – padlí rajčat (Oidium lycopersici). Plant Protect. Sci., 36: 156–162.

Fytopatologie se v posledních letech stává stále více strukturovanou a specializovanou vědeckou disciplínou, a to i přesto, že v řadě případů postrádáme základní informace o patogenních mikroorganismech a jejich interakci s hostitelskou rostlinou. Jedním z příkladů této situace může být i interakce rajče (Lycopersicon spp.) - padlí rajčat (Oidium lycopersici). Právě u tohoto patosystému lze demonstrovat určitý pokrok poznání, který nastal ve fytopatologii v průběhu posledních let. Padlí rajčat (Oidium lycopersici) způsobuje v posledních přibližně patnácti letech vážné škody na skleníkových porostech rajčat (Lycopersicon esculentum). Ačkoliv doposud nebylo nalezeno pohlavní stadium patogena, srovnávací morfologické studium nepohlavních stadií padlí (světelnou a elektronovou mikroskopií) prokázalo, že Oidium lycopersici může být zařazeno do rodu Erysiphe sect. Erysiphe (blízko Erysiphe aquilegiae var. ranunculi). Významné zdroje rezistence byly nalezeny hlavně mezi genotypy druhů Lycopersicon hirsutum and L. pennellii (což bylo potvrzeno testováním více izoláty O. lycopersici). V předloženém příspěvku jsou také shrnuty poznatky o intraspecifické variabilitě patogena. Z výsledků studia hostitelského okruhu vyplývá, že existují značné rozdíly ve schopnosti různých izolátů O. lycopersici infikovat např. okurku (Cucumis sativus) a tabák (Nicotiana tabacum), což poukazuje na potenciální existenci různých patotypů /formae specialis/ patogena. Podobně byly zjištěny rozdílné reakce některých genotypů rodu Lycopersicon vůči různým izolátům O. lycopersici, což potvrzuje existenci různých ras patogena. Příspěvek podává také informace o mechanismech rezistence a pravděpodobném genetickém založení rezistence. Závěrem je nutné podotknout, že je potřeba dalšího intenzivního komplexního výzkumu patogena za použití nejnovějších molekulárních, ale i klasických metod.

Klíčová slova: *Lycopersicon* spp.; *Oidium lycopersici*; rozšíření; taxonomická pozice; okruh hostitelů; variabilita patogenů; zdroje rezistence; mechanismus rezistence; založení rezistence

Corresponding author:

Prof. Ing. ALEŠ LEBEDA, DrSc., Univerzita Palackého, Přírodovědecká fakulta, Katedra botaniky, Šlechtitelů 11, Olomouc-Holice, 783 71, Česká republika, tel.: + 420 68 52 23 325, fax: + 420 68 52 41 027, c-mail: lebeda@prfholnt.upol.cz