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Abstract

Plant viruses cause severe damage and significant economic losses to agriculture. Control of virus usually consist of
the elimination of virus vectors (insects, nematodes, fungi, etc), improvement of the sanitary status of the propagation
material, the use of resistance sources in breeding programs. The application of the pathogen-derived resistance strategy
has opened new avenues to protect plants against viruses. Two molecular mechanisms seem to underlie the engineered
protection, the virus transgene-derived protein and the transgene-RNA interference. A few examples that support the
efficiencies of these two molecular mechanisms are reviewed here and discussed in light of the potential use of virus-

resistant transgenic plants in agriculture.
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INTRODUCTION

Plant pathologists and breeders are developing strat-
egies to control virus diseases. Understanding the
biological properties of viruses and virus transmission
process is an important prerequisite that complement the
identification and use of host resistance sources.

Mc KINNEY (1929) used cross protection to control
Tobacco mosaic virus (TMV) by the use of a mild
strain to protect plants against infection by a severe
strain. GONSALVES and GARNSEY (1989), LECOQ et
al. (1991), GAL-ON and RACCAH (2000) reviewed
the practical use of cross protection to control virus
diseases.

BEACHY et al. (1986) have shown that the introduc-
tion of a virus gene encoding a capsid protein (CP)
into a plant genome can protect against the homologous
virus. In the 90’s, information was gained on the
molecular mechanisms of the engineered protection.
Subsequently, it became clear that a certain degree of
specificity existed between the virus-derived transgene
and the incoming virus, indicating the occurrence of a
sequence homology-dependent mechanism. This report
reviews the use of transgenic plants containing CP
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transgenes (transcripts or proteins) that can interfere
with virus replication, long distance transport or
subunit disassembly.

RESULTS AND DISCUSSION
Coat-protein gene-derived resistance

Since the discovery of POWELL-ABEL et al. (1986)
numerous transgenic plants have been produced. Two
basic molecular mechanisms are involved: the coat
protein- and RNA-mediated resistance (Figure 1).

Subunit of capsid protein for protection

Using TMV as model, it has been demonstrated
that the CP subunits engineered in transgenic plants
of CP are capable to induce a delay in virus symp-
tom development (POWELL-ABEL et al. 1986). Such
findings are explained by interference with the initial
phase of TMV disassembly that occur in early events
of infection (REGISTER & BEACHY 1988). BENDHA-
MANE et al. (1997) demonstrated that the stability of
the CP produced by the genetically modified plants,
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Figure 1. Schematic diagram summarizing the two molecular mechanisms induced by the introduction of virus capsid

gene in plant genome

in particular three couples of key aminoacids located
at the NH2 end of the CP, is critical for the level of
resistance.

Nucleotide sequence of capsid gene for conferring
protection

DOUGHERTY and PARKS (1995), BAULCOMBE (1996)
demonstrated the phenomenon of RNA-mediated re-
sistance. These authors showed that resistance could
be achieved in transgenic plants containing the CP
gene and expressing CP gene transcripts but not the
CP. The production of CP transcripts and its degra-
dation independently or associated with the RNAs of
the challenge virus led to the discovery of post-tran-
scriptional gene silencing (PTGS). PTGS specifically
targets the virus-derived transgene sequence as well
the homologous sequence from the challenge virus.
A few economically important crops expressing CP
gene transcripts but not the CP have potential for
future use in agriculture (GONSALVES 1998; PANG et
al. 2000; SCORZA et al. 2001)

Applicability in agriculture
Benefits

Transgenic squash designated as “Freedom II”
is among the first virus-resistant crop that was de-
regulated and commercially released in the USA. It
contains the Zucchini yellow mosaic virus (ZYMYV)
and Watermelon mosaic virus (WMV) CP genes and
is resistant to single and mixed virus infection by
ZYMV and/or WMV. Transgenic papaya resistant to
Papaya ringspot virus (PRSV) was recently deregu-
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lated (GONSALVES 1998). This technology applied to
control viruses of fruit trees (RAVELONANDRO et al.
2000) and vegetables (PANG et al. 2000; THOMAS et
al. 1997) increase not only yield but also contribute
to the reduced use or even elimination of chemicals to
control aphid vectors (PHILIPPS & PARK 2002). A few
virus-resistant transgenic plants have been deregulated
in the USA (Table 1).

Environmental safety issues

The use of virus-resistant transgenic plants raised
concerns for their release into the environnment.
Transencapsidation (LECOQ et al. 1993) and re-
combination (FUCHS et al. 2001) can conduct to the
emergence of new viruses. Many studies have been
achieved under greenhouse conditions or in a restricted
field area. Interestingly, no detrimental effects be-
yond those of natural background events have been
observed so far.

The USDA, EPA, and FDA have deregulated trans-
genic potato, squash and papaya in the USA. These

Table 1. Deregulated crops engineered with phytovirus
transgene

Virus transgene Crops Year
WMV2 & ZYMV CP Squash 1994
CMV, ZYMV WMV2 CP Squash 1997
PRSV CP Papaya 1998
PLRV CP & replicase Potato 1999
PVY CP Potato 1999
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decisions were based on scientific risk impact stud-
ies. No labelling of the final products to be used by
consumers is required in North America. Contrary,
the European Union requires this information by law
(Official Journal of the European Communities 2000).
Such controversy is compromising the acceptance of
the biotechnology products in Europe. Benefits from
biotechnology must be shared and not be restricted
only to the New World because such atmosphere
would lead to a technological clash between the two
continents.
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