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Abstract: Climate change will change patterns of disease through changes in host distribution and phenology, 
changes in plant-associated microflora and direct biological effects on rapidly evolving pathogens. Short-term 
forecast models coupled with weather generated from climate simulations may be a basis for projection; how-
ever, they will often fail to capture long-term trends effectively. Verification of predictions is a major difficulty; 
the most convincing method would be to “back-forecast” observed historical changes. Unfortunately, we lack 
of empirical data over long time-spans; most of what is known concerns invasions, in which climate is not the 
main driving factor. In one case where long-term prevalence can be deduced, climate had little to do with change. 
Resilience to surprises should be the most important policy aim. 
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Background

Whatever humans do, plant diseases will change. 
New crop diseases will appear; old ones will change 
their relative importance, evolve to overcome host 
resistance and fungicides, or inexplicably cease 
to be a problem. There is no doubt that even if 
climate remained static this would still be true, 
and many serious and unexpected changes would 
occur. So in asking about the consequences of 
climate change for plant disease, we should be 
asking about system properties rather than specific 
predictions. We may reasonably ask “will the rate 
at which diseases acquire the ability to infect new 
hosts change in the new climate we anticipate?”, 
but it is probably foolish (and hard!) to ask “will 
Puccinia coronata jump to infect wheat?” In this 
paper, I try to discuss the problems of trying to 
predict these changes in system properties, and the 
intermediate problem of trying to predict changes 
in disease if only climate and host distribution 
changed. The paper is not a review, and examples 
are cited to make specific points, not in any way 
as a comprehensive survey; inevitably, therefore, 

many valuable contributions to the literature are 
not cited.

In discussing the consequences of climate change, 
we are talking about consequences of subtle trends 
associated with a particular time-scale. More con-
cretely, the temperature within a day could vary by 
20°C, and the average temperature between seasons 
in a continental climate by 30°C, yet the concern 
over climate change is about decadal averages vary-
ing by as little as 2°C; or more accurately, over the 
distributional changes in short-term weather with 
quite slight changes in mean values (e.g. Scherm 
1994). So the question of how these changes will 
affect plant disease is one about how to translate 
predictions of this physical time-series into predic-
tions about one component of an ecosystem. The 
task is made more difficult because the organisms 
we are interested in are not the dominant biomass 
component of the ecosystem and are profoundly 
dependent on other organisms, small and large. At 
least in the short term, the problem is also made 
more difficult because the life-cycles of fungi and 
bacteria are intimately related to precipitation. 
Precipitation patterns are both harder to model 
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and harder to verify, so that the most critical as-
pect of climate prediction is also one of the least 
reliable (Solomon et al. 2007, Chapter 8).

The community of species within an ecosystem 
is determined by soil, climate, management and 
the accidents of history and evolution. Within this 
context, plant pathogens are one of the more visible 
microbial components, and crops one of the more 
intensively managed components. Like any other 
species, a plant pathogen, simply because it is a cur-
rent component of an ecosystem, can be deduced 
to have a balance between periods of population 
increase and decrease that is sufficiently stable to 
avoid extinction. Infection by an individual cohort 
of propagules is likely to be influenced by weather 
conditions which are transitory on scales of hours. 
However, these weather fluctuations will not trans-
late into similar fluctuations in population, because 
they will be smoothed by the spread in time-scale 
of the population processes within the population, 
which will be of the order of the generation time. 
An added level of complexity is introduced by the 
need to consider the time-scale of the host popu-
lation dynamics. This is often substantially longer 
than the time-scale associated with the pathogen, 
which therefore tracks the host dynamics; in this 
case smoothing will typically be on the time-scale 
set by the host. Typical asexual generational time-

scales will be days to weeks; sexual time-scales of 
the order of years. Evolutionary changes depend 
on the strength of the selective force operating: for 
breakdown of a major-gene resistance the time-
scale is a few years, while for changes in response 
to slighter fitness differences, the time-scales can 
be anything up to the point where chance takes 
over (that is, when selective changes are much 
smaller than chance changes, change due to se-
lection becomes unpredictable. Chance processes 
will dominate if selective changes are weaker than 
about 1√Ne, where Ne is the effective population 
size-likely to be roughly the size of the population 
in the off-season. This is associated with a time-
scale of about √Ne). Because the generational time-
scales are quite short, and the reproductive rate of 
a pathogen may be greatly influenced by weather 
on time-scales of hours, rapid natural selective 
changes must be the norm in pathogen populations, 
if variability is present. However, the direction of 
the selective forces acting will change frequently 
and rapidly, so that, as with population dynamics, 
long-term trends are the average around a very 
noisy mean. We can see a time-series of abundance 
of disease as the outcome of a filter acting on the 
physical and biological time-series underlying it, 
the output of the filter being the disease time-series 
(Table 1, Figure. 1).

Table 1. Time-scales associated with various sources of change in plant disease

Source Time-scale Evidence

Generation time days-seasons basic epidemiology: eg at minimum potato blight 
4–7 days; probably no upper limit other than host 
lifetime

Invasion of a new avr type season breakdowns of rust resistance in wheat, blight  
resistance in potato

Waiting time for successful mutation  
in average genotype

5 seasons boom-bust cycles in lettuce, wheat, potato

Equilibration of a soil or seed-borne disease 
following crop range expansion or change  
in agronomy

5 seasons take-all decline; increases in trash disease after  
introducing minimal cultivation

Spatial expansion over a new range  
(including jumps)

decade sigatoka, soy-bean rust, coffee rust, rhizomania

Change in range of host due to shifting  
climatic limits

multi-decade predicted rate of climate change (0.2–0.4°C/decade)

Change in disease dominance due to chang-
ing probability distribution of weather alone

multi-decade predicted rate of climate change

Qualitative host-shift millennia? depth of branching phylogenetic trees; but there are 
tens of thousands of sources so the rate observed 
looking at all crops together may be important
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Tracking host changes

To begin at the longest time-scale: host plant 
distributions will change in response to climate, 
and diseases will gradually follow. This allows some 
of the more robust predictions we may be able to 
make. For example, following the huge expansion 
in area cropped to oilseed rape, leading to large 
areas with the crop grown 1 in 4 or 5 years, increase 
in Sclerotinia is predictable; it is arguable that 
since the initial level was low and the pathogen 
monocyclic, the build-up is taking many years but 
without counter-measures will become extremely 
severe (compare Turner et al. 2002; Gladders 
et al. 2008). For the wild plants we have in most 
parts of the world, the plants we have are those 
which are able to alter their distributions over the 
time-scales involved in the glaciations and de-
glaciations of the last million years, of a century 
or so (Comes & Kadereit 1998). These range-
expansion and contraction processes are faster 
than evolutionary emergence of new species, so 
communities have been assembled and torn apart 
many times. However, time-scales were probably 
long enough to allow pathogens to track the ranges 
of their hosts so that long-term escape from es-

tablished diseases was probably rare. For crops, of 
course, enormous range-changes are possible over 
decadal time-scales. An indication of the kind of 
adaptation that commerce will drive is the current 
planting of champagne-type grapes in southern 
England by some of the major French champagne 
companies, who expect, or fear, that the ideal zone 
for growing grapes for this type of wine will move 
north. At the same time, genotypic changes will 
occur in crops with rapid breeding cycles, includ-
ing most vegetable and arable crops; this is likely 
to alter the spectrum of diseases on these crops 
as selective changes responding to physiological 
adaptations have unexpected side-effects. (For 
example, introduction of semi-dwarfing genes to 
wheat accidentally implied environmental sus-
ceptibility to Mycosphaerella graminicola (Simon 
et al. 2005)). Alongside changes in crops, which 
may be put together in novel combinations, and 
changes in cropping patterns, which are probably 
more important, will go changes in soil micro-
flora and in the unmanaged vegetation adjacent 
to cropped areas. These changes in soil and phyl-
loplane microflora, alternate hosts, crop genotype, 
crop species and cropping patterns will drive not 
only changes in pathogen population dynamics, 

(a)	 (b)

Figure 1. The effect of the time-scales over which biological responses by populations are integrated is to “filter” 
rapid changes from a time series. (a) A rapidly fluctuating series with a step-change in mean much smaller than 
the overall variability. The effect of this step change is to greatly alter the frequency of extreme events (line A); 
(b) The response as seen in a population or proxy for population such as disease incidence

Smooting  
organism of 
population
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but also evolutionary changes in the pathogens. 
These changes, of course, are constrained by the 
space of variation which the integrated genotype 
of the pathogen can explore, which is limited in 
ways we are at present largely unable to define. 
The recent emergence of warm-adapted yellow 
rust of wheat (Milus et al. 2009), however, shows 
that the historical record of the environment lim-
iting a disease may be an unreliable guide to the 
environments it can adapt to (Figure 2).

Predicting and testing predictions

Therefore, the problem of preparing for change in 
plant disease due to changing climate is inevitably 
complex, and specific prediction with any useful 
degree of skill more than a short time ahead is 
unlikely to be possible. (Skill here is used in the 
meteorologists’ sense: in this case, better than a 
prediction based only on the long-term average.) 
This is because the uncertainties in predicting all 
the factors influencing disease are likely to spread 
out the initial distribution of uncertainty in cli-
mate prediction until the distribution is almost 
uninformative (cf. Scherm 2004).

If we wish to forecast changes in plant disease 
in relation to climate, we need to test our fore-
casts. The problem is that there is no point in 
forecasting if we must wait a half-century to see 
which elements of our forecast were true. We have 

some confidence in climate projections because, 
running them for past periods, they match past 
records to a better or worse extent. Such records 
include substantial spans of instrumental records 
in some countries, and then various proxy data 
available from ice and ocean sediment cores, from 
tree-rings, lake deposits, and the annual variation 
in growth of animals. With huge labour, such 
records, with varying degrees of certainty, now 
extend back for millenia or thousands of millen-
nia (Solomon et al. 2007, Chapter 5; Mann et al. 
2008). The problem is to find similar records of 
plant disease which can be used to test forecasts 
of plant disease models.

The long-term dynamics of plant disease has been 
little studied, because the focus of most patholo-
gists has been on the provision of advice to and 
tools for farmers and breeders to deal with urgent 
problems. Many surveys of disease are either done 
once only, use incompatible or impressionistic 
measurements, or are not fully published. Other 
runs of data concerning breeders and chemical 
trials are published only sporadically and have 
not been collated. This is an urgent co-operative 
task, which will involve working out ways to relate 
measurements made in different ways, and even 
of symptoms now described differently.

An example of the use of long-term records comes 
from two series of measurements of wheat diseases 
in the UK. First, since 1970 the government of 
England and Wales has made a systematic survey 
of disease in the wheat crop, with a break of only 
two years (King 1977; Polley & Thomas 1991; 
Hardwick et al. 2001; Food and Environment 
Research Agency 2009). (That break illustrates 
the difficulty with this kind of work: it arose be-
cause the government of the time, believing that 
the public sector was too large, wished to cut all 
expenditure without obvious justification as a 
public good in the short term; where science fund-
ing is project-oriented on cycles of a few years, it 
is similarly very hard indeed for a data collection 
function to compete with a hypothesis-oriented 
project proposal, especially where, for the data to 
be continuous and useful, the collection project 
must win such a competition every three years.) 
Second, every year since 1845, wheat crops have 
been grown in the same field at Rothamsted Experi-
ment Station in southern England, under a set of 
similar nutrient treatments. Each year samples of 
soil, straw and grain were dried and stored. In the 
early 2000s it proved possible to amplify specific 

Figure 2. Evolutionary adaptation to climate by a patho-
gen. Estimates of intrinsic growth rate r are based on 
the data in Milus et al. (2009), using the approximate 
formula r = log(R)/p, where R is total spore production 
and p generation time, assuming sporulation patterns do 
not differ greatly and that the generation time is appro-
ximated by the latent period (Segarra et al. 2001)
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regions of DNA from both wheat and associated 
organisms in these archived samples (Bearchell 
et al. 2005). The survey data and these measure-
ments make it possible to examine long-term 
changes in several pathogens.

Two pathogens of particular interest are those 
causing the so-called septoria diseases , My-
cosphaerella graminicola and Phaeosphaeria nodo-
rum. Both diseases require wet weather to multiply. 
M. graminicola currently produces abundant as-
cospores and so spreads from crop to crop, while 
P. nodorum is seed-borne. P. nodorum is perhaps 
adapted to somewhat higher temperatures than 
M. graminicola, and has a shorter minimum latent 
period. Thus, a simple environment based forecast 
would suggest that the prevalence of P. nodorum 
should have increased during the 1990s and 2000s, 
as average summer temperatures rose; little change 
before then would have been predicted. However, 
varietal factors and crop-crop spread change this 
picture. Varieties susceptible to M. graminicola 
were introduced during the 1970s, the wheat area 
increased, and seed fungicide treatment became 
the norm. All three factors should have led to an 
increase in M. graminicola. Looking further back, 
however, there should have been relatively little 
change during the 19th century, when both varie-
ties and technology were stable. 

Bearchell et al. (2005) correlated the England 
and Wales survey data with the measurements 
from archived samples at Rothamsted. The two 
data-sets agreed reasonably well. It is therefore 
reasonable to look back in the Rothamsted data 
into the 19th century (Bearchell et al. 2005; Shaw 
et al. 2008). Rather than the stability expected, 
there was a decline in M. graminicola, and a rise 
in P. nodorum through the latter 19th century and 
first three-quarters of the 20th century, before 
a dramatic and sustained rise in prevalence of 
M. graminicola in the last 30 years. Furthermore, 
there was an extraordinarily tight correlation with 
sulphate pollution throughout the period of the 
data series. Although this is not necessarily causal, 
it does illustrate the key problem of predicting 
disease: the factors controlling the systems are 
not fully understood (Shaw 2008). This is obvious 
enough to sound trivial, so it is worth emphasis-
ing that both diseases are intensively studied, and 
infect wheat, one of the most intensively studied 
plants. While there are no doubt still surprises 
lurking in climatic processes, the fundamental 
physics of climate is far better understood than 

the population biology of plant pathogens, and 
this difference needs to be emphasised when “best 
available” predictions are offered to discussions 
on policy.

There are two currently favoured methods for 
making predictions as to how geographic ranges 
and average severity of a disease may change. 
The more widely used assumes that climate and 
host currently limit the pathogen, and attempt to 
match the current geographic range with suitable 
climatic measures. Future range is then matched to 
predictions of future climate (Desprez-Loustau 
et al. 2007; Steffek et al. 2007); this is widely 
used in predicting the possible limits to expansion 
of newly invasive diseases (Venette & Cohen 
2006). It is obviously valid only if the geographic 
range is approximately stable and therefore due 
to climatic limits rather than history; it is also 
vulnerable to stochastic evolutionary events such 
as the changes in yellow rust of wheat referred to 
above (Figure 2). The second approach applies if 
we believe that we know the basic factors limit-
ing the abundance of a pathogen and understand 
quantitatively their relation to weather. It may then 
be appropriate to use a weather-based prediction 
system (Seem 2004; Semenov 2007) to predict fu-
ture abundance. Garrett et al. (2006) argue that 
this reductive, process-based approach is practical, 
though challenging, for many pathosystems. For 
example, Evans et al. (2008) used an analysis of 
key features of the monocyclic pathogen Lepto- 
sphaeria maculans, coupled to a weather genera-
tor parameterised by predicted future climate, to 
predict the future levels of the pathogen (Figure 3). 
There are two aspects of this work which are of 
interest in the present context. First, there is no 
obvious way to test the predictions in advance of 
the period to which they refer. Second, despite 
the effort exerted, the problem is in certain senses 
atypically easy, because most of the key features of 
the models used were based on temperature sums 
and relations between abundance and functions of 
weather variables which were direct rather than 
via an exponential. The use of temperature sums 
smooths a good deal of variability; the non-expo-
nential relationships arise because the pathogen 
is not polycyclic within a year. Many diseases of 
great economic importance – stem rust of wheat, 
for example – are highly polycyclic, and small er-
rors in understanding relationships with the biotic 
or abiotic environment could produce very large 
errors in predictions. It is not obvious that these 
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limitations in extrapolating from small-scale, short 
time processes to much longer time-scales will be 
easy to overcome.

Approaches to predicting long-term prevalence 
that start from the basic processes involved re-
quire that we have a good understanding of these. 
At a minimum, they should make possible good 
short-term forecasting. Bourgeois  et al. (2004) 
examined a number of pathosystems for which 
forecasts were available in Canada, concluding 
that none were reliable enough in a single season 
to use for long-term prediction with any reason-
able confidence. Probably the most-studied plant 
disease is potato blight caused by Phytophthora 
infestans, and if any system is suitable for longer-
term forecasting, this should be. The comparison 
made by Taylor  et al. (2003) of the performance 
of various forecast models against historical data 
is sobering: under UK conditions, forecasts were 
very poor indeed in at least one year in six; in 
fact, while the forecasts do have some skill, they 
function to assist spraying only when continually 
updated with current observations. Without a clear 
understanding of what is missing in these short-
term forecast models, they can hardly be used as 
the basis for longer-term climatic predictions. In 
fact, it seems quite possible that what is missing is 
evolutionary change, which has clearly happened 
rapidly in the last decades (e.g. Fry et al. 1992) 
– possibly after a long period of stasis. The rapid 
change in this case may have been made possible 
by the variability released through sex (e.g. Leh- 
tinen et al. 2008). However, given a pathogen 

species, a list of hosts and a list of environments, 
we have few clues as to the constraints to variation 
there are in that pathogen to respond to selection 
to infect a new host or utilise a new environment. 
Even with a detailed molecular understanding of 
how an organism currently works, it still seems 
unlikely we shall ever be able to predict exactly 
what phenotype space an organism is potentially 
able to evolve into.

Changes in vector-borne virus diseases may be 
the easiest to predict, because vector activity and 
range is often related to simple medium-term cli-
matic variables such as temperature sums (Lewis & 
Sturgeon 1978). However, most systems deployed 
to guide pesticide use rely on trapping methods 
both to initiate the calendar within which the 
temperature sums will be used and to determine 
the severity in a particular year. Furthermore, 
recent very serious problems with vector borne 
diseases seem to involve genetic changes in the 
pathogen or vector coupled with movement in 
trade or expansion of the area occupied by a crop, 
rather than any changes in climate such as im-
proved or altered over-wintering (Colvin et al. 
2004; Bove 2006). 

Genetic change and community change

The last point may be a general one: changes 
in climate will produce changes in crop, weed 
and wild plant distributions, and to changes in 
animal ranges which will bring together patho-
gens and hosts in novel combinations or at novel 
times of the year. It seems increasingly probable 
that this will bring unexpected host shifts either 
through the pathogen “discovering” a new host 
which is vulnerable with only one or two muta-
tional changes or through the acquisition of novel 
genetic material within the species or horizontally 
(Bove 2006; Stukenbrock & McDonald 2008). 
When such shifts happen, of course, they do so 
into host genetic landscapes which have not been 
selected for resistance, and the results may be 
very spectacular. Molecular biology, hopefully, 
as it increases our understanding of the interplay 
of host defence and pathogen counter-attack will 
clarify what is more and less likely, and provide 
an expanding set of examples of how host shifts 
may occur, and the routes of genetic innovation 
which make them possible. However, as it seems 
increasingly unlikely that a complete catalogue of 

Figure 3. A simplified conceptual diagram of (black) 
the processes which are usually taken into account in a 
forecasting model and which can therefore be used to 
predict changes in disease abundance under an altered 
climate (grey) a minimum set of processes which are 
implicit in such a model but which may change as climate 
and consequently host communities change
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the organisms on the earth is attainable, it seems 
even less likely that a complete catalogue could be 
compiled, not just of what each does but of what 
it could do given arbitrary changes or exchanges. 
So one fairly secure prediction is that climate 
change will increase the rate at which unpleasant 
surprises appear.

Climate change at the rate projected for this 
century will mean that many plants find them-
selves in climatic zones which are no longer ideal; 
in consequence, they will be stressed, and disease 
resistance may be compromised. However, as a 
factor organising a plant community this particular 
mode of change seems likely to be less important 
than competition between plant species, in which 
disease would simply be another factor altering the 
dominance relations of the species growing in a 
particular area. The problem has two facets. One is 
aesthetic: the community of plants now best-suited 
to a changed climate will differ from that we are 
accustomed to. The other is to do with rate: the 
rate of climate change (and especially of change 
in rainfall patterns) is liable to be faster than the 
time-scale associated with turn-over in both for-
est (because trees take a long time to mature) and 
dryland vegetation (because growth is water-limited 
and plants must invest heavily in structural and 
secondary compounds and so grow slowly).

Research and advisory priorities

Evidently, research on the likely patterns of 
change in plant disease attributable to predicted 
climate change is important. Advances through-
out the entire field of pathology will be helpful, 
but analysing the questions specifically posed 
by climate change points to some curiously ne-
glected areas. One already mentioned is the need 
for better historical understanding of disease and 
better collation of the scattered data which exists. 
Another is the need for much better (quantitative) 
understanding of crop-crop transfer and off-season 
survival, without which long-term predictions 
of average prevalence will be almost meaning-
less. But our substantive advances in this area 
will not really be distinguishable from advances 
in general understanding of the ecology of plant 
disease. Advice to growers, and the politicians 
regulating markets in land food and commodi-
ties, must emphasise the need for systems to be 
resilient and adaptive to the unexpected. Planning 

must obviously include “best guesses” and clear 
predictions but we must convey the sources of 
uncertainty effectively. 
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