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Spatial heterogeneity in agricultural systems is recognised as an important source of variability to be investigated. In 
the evolution of Integrated Pest Management (IPM), patterns and processes that influence spatio-temporal dynamics 
in insect populations tend to assume more importance compared to the classical theory. Geostatistics represent a 
valuable tool to investigate the spatial pattern of insect populations and to support pest control. After an explana-
tion of the geostatistical analysis, in the present paper we provided an overview of practical applications in managing 
pests, focusing on fruit orchards and vineyards. The utility of geostatistical tools is illustrated with examples taken 
from field studies, with attention to the analysis of spatial patterns, monitoring schemes, use of traps, scale issues, 
precision targeting, and risk assessment maps. Potential approaches in the context of IPM are discussed in relation 
to future perspectives.
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Agricultural systems are intrinsically heterogene-
ous. In fact, they contain variable arrangements of 
soils, habitats, microclimatic features, plant com-
munities, and consequently they show an extensive 
variability in soil fertility, water retention, crop pro-
ductivity, and so on. Basically, this is true also when 
we consider single fields that are typically composed 
of a central part and a border with many biotic and 
abiotic parameters showing gradients and edge ef-
fects (van Helden 2010). 

The same principles apply to insect populations. In 
this case, spatial variation is caused by the interaction 
between population dynamics on the one hand and 
biotic or abiotic factors on the other. Processes that 
influence the spatial heterogeneity include popula-
tion growth (reproduction, mortality) and dispersal 
(immigration, colonisation, emigration). For exam-
ple, aggregations can be determined by the position 
of initial immigrants influencing the behaviour of 
other individuals/species through the emission of 

pheromones or inducing the formation of new plant 
volatiles. Similarly, the colonisation process is strongly 
influenced by birth/death rates that differ locally, so 
that the total population density in the whole field 
will increase, while in limited areas population will 
become extinct, leading to a clumped spatial pattern 
(Fleischer et al. 1997).

At the landscape level, the fragmentation of farm-
land has resulted in a scattered resource distribution 
that strongly enhances the importance of landscape 
structure in determining the final spatial pattern of 
a pest inside and outside a crop field. In fact, the dis-
tribution of host plants, including alternative hosts, 
will influence the short-distance foraging flights of 
herbivores, and often also the dispersal of predators 
and parasitoids (Mazzi & Dorn 2012). In the same 
way, the location of overwintering sites will determine 
the reinvasion pattern in the following season.

In the past, many efforts have been dedicated to 
improving the efficiency in the design of agricultural 
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experiments minimizing the residual variability that 
in field trials is due mainly to the spatial hetero-
geneity. The strong advance of the space issue in 
biological sciences has arisen from the recognition 
that spatial variability, or patchiness, is widespread 
in natural populations and this characteristic is an 
interesting quantity rather than a statistical nuisance 
to be overcome (Schneider 1994). 

In the new evolution of Integrated Pest Manage-
ment (IPM) concepts, the spatial variation in pest 
populations tends to assume more and more im-
portance compared to the classical theory. In site-
specific IPM, the heterogeneity at the single field 
level is analyzed with the aim of optimizing chemical 
treatments (Park et al. 2007). In area-wide IPM, the 
importance of managing the whole pest population 
at landscape or regional level is emphasised, for ex-
ample by identifying pest shelters inside and outside 
crops (Hendrichs et al. 2007). As a matter of fact, 
however, incorporation of the spatial component in 
management plans is still isolated in practice.

In these contexts, geostatistics represent a valu-
able set of statistical tools to investigate the spatial 
pattern of pests and to support the facilitation of 
practical pest control applications.

In the present paper we provide an overview of 
geostatistical applications in the study of insect 
spatial distribution, focusing on fruit orchards and 
vineyards, and their utility in managing pests is il-
lustrated with examples taken from field studies. 
Potential approaches in the context of IPM are also 
discussed in relation to possible future perspectives.

Geostatistics

After the advent of calculators for the capture 
and elaboration of experimental data, largely ac-
cessible today thanks to new technologies such as 
personal computers, GPS, remote sensing, and GIS 
tools, statistical approaches that incorporate space 
in the elaboration have found new applications in 
many science subjects. In this context, a major role 
is played by geostatistics, first developed for mining 
explorations and then adopted by many environmental 
disciplines such as agriculture, hydrology, meteorol-
ogy, soil sciences, fisheries, forestry, epidemiology, 
landscape ecology, environmental pollution, and 
risk assessment.

Geostatistics are a collection of statistical methods 
analyzing spatial dependence among samples (auto-
correlation) and obtaining estimates of the variable 
under study at unsampled locations. For a detailed 

description of the general theory and principles, re-
fer, among others, to Cressie (1993), Webster and 
Oliver (2001), and Chilès and Delfiner (2012). 
Various internet sources are available for both begin-
ners and experts to this subject; for an overview of 
geostatistical methods implemented in real applica-
tions, it is possible to consult the active list service 
of AI_GEOSTAT (1995) or the website of GeoENVia 
Association (2011), that organize every two years 
the International Conference on Geostatistics for 
Environmental Applications.

In brief, the main steps in the geostatistical analy-
sis are:

(1) Exploratory data analysis. Some elementary 
statistical analysis is useful to highlight general char-
acteristics of data. Normality of data distribution can 
be evaluated using histograms and box-plots or by 
calculating some coefficient of asymmetry. Skewed 
variables often show a proportional effect, i.e., a 
higher variability in high valued areas and a lower 
variability in low valued areas that distort variogram 
results (Manchuk et al. 2009). Although formally 
not required, a normal distribution of data improves 
the autocorrelation analysis and can be achieved 
with a logarithm transformation.

(2) Estimation and modelling of spatial autocor-
relation. To evaluate the spatial variation, different 
tools can be used, analyzing correlation coefficient 
(in correlograms), covariance (in covariance func-
tions) or variance (in semivariograms). On choosing 
between these methods in ecological applications, 
see Rossi et al. (1992). Next, we will refer mainly to 
semivariograms, the most commonly used method 
in geostatistics. 

The experimental variogram is a graph of dis-
crete points at particular lag intervals, showing the 
semivariance of sample pairs against the distance 
between sampling points. The semivariance γ for 
lag distance h is given by:

γ(h) =    1     Σ N(h)
[z(xi) – z(xi + h)]2

 

               2N(h)   i=1

where:
z(xi)  – measured sample point at xi, 
z(xi + h)  – measured sample at point xi + h
N(h)  – number of pairs separated by the lag h

Because these estimates can strongly fluctuate 
from point to point due to sampling errors, a model 
describing the spatial variation must be fitted. Among 
the approaches available for use there are exponential, 
spherical, linear, polynomial, and Gaussian functions 
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that can also be combined to obtain nested models 
(Pannatier 1996). Figure 1 illustrates key features of 
a semivariogram: the nugget is the y-axis intercept; 
the sill is the point at which variance no longer in-
creases; the range corresponds to the distance where 
the sill is reached. Differences in spatial variation 
with geographical direction are known as anisotropy: 
a diverse semivariogram model can be produced for 
each considered direction. A geostatistical rule of 
thumb is that each lag interval must be represented 
by at least 30 pairs of points (Journel & Huijbregts 
1978). This means that a minimum number of 25–30 
sample units is required to obtain variograms with 
4–5 lag classes, but often more points are neces-
sary to accurately estimate sample pair variances 
(Nansen et al. 2003). Webster and Oliver (1992) 
pointed out that a minimum number of 100 sam-
pling points is needed to give reliable results, but 
in a practical context it is often necessary to work 
with many fewer points. Semivariogram modelling 
is not an easy exercise and much practice should be 
devoted to this analysis. For more information on 
these techniques and interpretation of results, consult 
Isaaks and Srivastava (1989) and Cressie (1993) 
for a general overview, and Oliver (2010) for their 
use in an agricultural context.

(3) Estimation of a surface area using interpola-
tion procedures. In geostatistics we can define the 
interpolation as a method of value estimation and/or 
prediction at unsampled locations in the geographi-
cal space. The objective of interpolation is to create 
continuous surfaces based on point samples. Many 
different methods are available, both deterministic 
and probabilistic, based on the mathematical algo-
rithms used to compute the weights to be assigned 
during the interpolation; examples are triangulation, 
inverse distance weighted, natural neighbour, kriging, 
radial basis function, and also more sophisticated 
Bayesian techniques, such as the stochastic condi-
tional simulation (Rossi et al. 1993). 

The ordinary kriging is considered the best linear 
unbiased predictor and is by far the most utilised. 
The estimated Z at unsampled location x0 is:

Z(x0) =
n

Σ  wi (x0) Z(xi)
 

               i=1

where: 
wi  – weight calculated for the sampled location xi
Z(xi)  – observed value at xi
n  – number of locations

The kriging weights depend on both the spatial 
autocorrelation measured in variograms and the 

spatial configuration of the sample points around the 
prediction location. Various forms of kriging have 
been developed to accommodate different types of 
data (i.e. block kriging for mean values from local 
areas, universal kriging when a spatial trend is de-
tected, indicator kriging for binary data, cokriging for 
two or more variables spatially autocorrelated, etc.). 

When insect populations are sampled, it is very 
common to obtain count data with many zeros. In 
these cases, indicator kriging represents an alternative 
choice. More detailed information on this method is 
reported in the paragraph “Risk assessment maps”. 

It is possible to assess the quality of interpolation 
by computing the errors (interpolated value minus 
observed value) and applying the cross-validation 
procedure; various statistics can be used as a quan-
titative measure of quality. For more information 
on geostatistical interpolation techniques, refer to 
Isaaks and Srivastava (1989) and Cressie (1993).

Different kinds of maps can be generated to visualise 
the results of the interpolation process, such as con-
tour maps, surface maps, image maps or wireframes, 
where the variable densities are represented as dif-
ferent lines, colours, shadows or in 3 dimensions. A 
base map can be overlaid to show landscape features. 

Sampling

Geostatistics represent a significant change in the 
methodology of sampling. In fact, traditionally we 
need to have independent data and sampling plans 
are designed to avoid correlations. On the contrary, 
geostatistics look for autocorrelations, and so sam-
pling plans became less restrictive (Sharov 1997). 
Moreover, the final objective of a geostatistical survey 
is not to obtain the estimation of a mean, as in classic 
plans, but to map the spatial variability of samples. 
For example, areas that are avoided because they 
might be a source of bias, such as field edges, become 
primary areas to be explored. Similarly, areas usually 
discarded because they are considered to be without 
or with a low pest presence, should be included: in 
a geostatistical survey, areas at zero levels are as im-
portant as high density areas (Brenner et al. 1998).

Nonetheless, new aspects arise that must be con-
sidered in spatially explicit surveys. It is known that 
precision, which indicates how well the mean is 
estimated, increases with sampling size (Fleischer 
et al. 1997). Classically, sampling plans are designed 
to balance such precision with the costs of sampling; 
in this case many sampling units are evaluated in the 
field and they are used to obtain a unique mean. In 
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geostatistical applications, a large number of sample 
units are needed to perform a variogram analysis, 
but sampling units are evaluated individually at each 
location and this results in a poor local estimate. This 
effect is more accentuated when the distribution 
is aggregated – a very common condition in pest 
populations. In such a situation, clusters of sampling 
units and interpolation data with block kriging can 
be a solution, but the costs of large sample sizes are 
often prohibitive (Fleischer et al. 1997).

In general, irregularly spaced sampling points are 
not a problem, especially for kriging interpolation 
and this characteristic gives some freedom in setting 
up a sampling design, but the orientation, scale, and 
arrangement of sampling units can still influence the 
result of geostatistical analysis. Moreover, an optimal 
sampling scheme for variography can be different 
from that designed for kriging interpolation, so the 
final purpose of our survey should be clear when the 
sampling plan is arranged (Marchant & Lark 2012).

Various classical sampling schemes can be adopted, 
such as simple random, stratified random, cluster, 
nested or systematic sampling (Wollenhaupt et al. 
1997). Among them, systematic design is generally 
considered more precise than simple or stratified 
random (Webster & Oliver 1990), but it must be 
remembered that in fruit orchards and vineyards 
there is usually a regular pattern composed of plants 
positioned at fixed distances within and between 
rows, and this can strongly influence geostatisti-
cal elaborations. Schotzko and O’Keefe (1990), 
evaluating the effect of sample placement on the 
geostatistical analysis of Lygus hesperus Knight in 
lentils, considered a staggered grid to give a better 
map precision than a uniform grid. 

In the case of insects, very often no prior informa-
tion is available, the variation is complex and the 
scale of the phenomenon is unknown. An exploratory 
survey of spatial variation can help to select the ap-
propriate size, number, and location of observations 
(Baldacchino et al. 2012; Marchant & Lark 
2012), but in practical situations it can rarely be 
done. In similar situations, it is possible to use e.g. 
a cluster sampling, where clusters of individual units 
are selected at random and each unit in the cluster is 
measured; this approach fits particularly well when 
populations tend to be clustered (Gilbert 1987). 
Another possibility is the nested survey, where, fol-
lowing a classification, clusters are subdivided, then 
the subdivisions are randomly selected and further 
subdivided until the smallest units are identified 
(Wollenhaupt et al. 1997). This approach allows the 

exploration of several orders of magnitude of spatial 
scale in a single analysis (Kerry et al. 2012). Bacca et 
al. (2008) used a cluster sampling plan to interpolate 
and simulate the male leaf miner Leucoptera coffeella 
(Guérin-Méneville & Perrottet) distribution at differ-
ent trap densities in a coffee plantation.

Another approach can be the adaptive survey, 
consisting of changing sampling efforts in the space, 
according to the data collected earlier (Thomson 
1990). An example of insect adaptive surveys, related 
to tsetse fly population, is provided by Sciarretta 
et al. (2005).

Practical applications

After the first studies carried out in North America 
to investigate the distribution of Pectinophora gos-
sypiella (Saunders) in cotton, L. hesperus in len-
til fields, and grasshoppers in uncultivated areas 
(Borth & Huber 1987; Kemp et al. 1989; Schotzko 
& O’Keefee 1989), geostatistics have seen many 
applications in various fields of crop protection 
against worms or arthropods pests (for more details 
see Liebhold et al. 1993; Brenner et al. 1998; Ar-
bogast et al. 2000; Brandhorst-Hubbard et al. 
2001; Park et al. 2007; Sciarretta & Trematerra 
2009; Webster 2010) and, in a few cases, to highlight 
predator and parasitoid distribution (Karimzadeh 
et al. 2011; Perović & Gurr 2012).

One of the most significant examples of applica-
tions in this field was carried out over the last two 
decades in the eastern United States against the gypsy 
moth Lymatria dispar (L.), which was introduced in 
North America from Europe in 1869 (Liebhold et 
al. 1989). Pheromone trap catches and egg mass data 
were analysed using geostatistical tools at regional 
scale to model the gypsy moth spatial dynamics, with 
the aim of: delimiting the boundary of pest disper-
sion, estimating the spread rate at the expanding 
population front, forecasting the spatial dynamics 
of moth outbreaks, predicting the larval defoliation 
levels, and evaluating the treatment effects (Lieb-
hold et al. 1991, 1998; Hohn et al. 1993; Sharov 
et al. 1995; Tobin et al. 2004, 2007).

Examples of practical applications focusing on 
fruit orchard and vineyard insect pests are reported 
in Table 1. 

Analysis of spatial patterns

Because spatial variation is due to so many fac-
tors, generalisation about the causes of patchiness 
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in insect populations is very problematic; often it 
is not possible to understand the main factors de-
termining the spatial pattern in a specific context 
or to predict a priori any form of distribution (van 
Helden 2010). Often, each orchard is unique and the 
features of experimental variograms are not the same 
also for neighbouring fields. Further, the distribution 
can change according to the insects’ developmental 
stage, the season, the phenological status of the crop, 
and the weather conditions. For example, alternat-
ing periods of clumped and random patterns were 
observed to be recurrent in fruit orchards and vine-
yards for leafhoppers, thrips, and fruit flies (Nestel 
& Klein 1995; Papadopoulos et al. 2003; Farias 
et al. 2004; Decante & van Helden 2008; Rhodes 
et al. 2011). Consequently, in situ observations are 
necessary to depict the spatio-temporal dynamics 
of a pest and descriptive maps must be developed 
to have a visual representation of pest presence in 
the agro-ecosystem. 

The study of spatial variation patterns is crucial 
from this point of view and the features of semivari-
ograms give us much information about the spatial 
structure of our data. 

An asymptotic function indicates an aggregated 
insect distribution and the range represents ap-
proximately the extension of hot spots (areas of ag-

gregation); on the contrary, linear functions indicate 
a uniform/random distribution, with the random 
component increasing with the increase of the vari-
ance variability; when the slope is near to zero we 
obtain a pure nugget effect, indicating a complete 
lack of any autocorrelation and a pure random dis-
tribution (Schotzko & O’Keefe 1989). 

A zero nugget indicates a strong confidence in 
sample data, while the presence of a nugget repre-
sents two sources of variability: the micro variance 
occurring at a scale smaller than the minimum lag 
distance and the measurement error.

Figure 1 shows common types of variograms un-
derlying different insect distributions. An index 
that can summarize the level of randomness is the 
k parameter, defined as the ratio between the nugget 
and the sill, and this indicates the degree of spatial 
dependence measured in the variogram (Journel 
& Huijbregts 1978). Values below 0.8 indicate that 
the distribution is aggregated; as the k parameter 
approaches zero, the level of spatial dependence will 
become greater.

Monitoring schemes

Monitoring pest population is a key issue in IPM 
schemes. The objectives of monitoring are to detect 

Figure 1. Variogram shapes of different Anarsia lineatella weekly pheromone trap catches and maps of the correspon-
ding spatial distribution in the investigated agro-ecosystem: A – clumped distribution without nugget, B – clumped 
distribution with nugget, C – random distribution
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the presence or absence of pests and quantify their 
abundance (and/or their natural enemies) through 
time and space. Follow the spatio-temporal dynam-
ics of the population by regular, periodic sampling, 
monitoring allows us to reach a decision as to whether, 
when and where a pest population requires a control 
action. 

In this context, geostatistics applied to a grid of 
monitoring points allows us to obtain a map providing 
useful information on the pest spatial distribution, 
in particular: 
– origin of infestations in the investigated agro-

ecosystem, both inside and outside the considered 
crops;

– position and temporal dynamics of hot spots;
– role played by cultivated and wild host plants as 

potential sources of infestation; 
– effect of landscape structure on the dispersal of 

the pest population.
As an example, we report the studies conducted on 

the distribution of Grapholita funebrana Treitschke 
and Cydia pomonella L. in two heterogeneous agro-
ecosystems of central Italy (Sciarretta et al. 2001; 
Trematerra et al. 2004).

In the case of G. funebrana, pheromone trapping 
was carried out inside a 12-ha plum orchard and to 
the surrounding area, covering a surface of about 
250 ha. The results revealed a distribution strongly 
influenced by the fragmented structure of the land-
scape and the presence and dissemination of host 
plants in the area investigated, where adults showed a 
strong capacity for dispersal and movement between 
elements of the landscape (Sciarretta et al. 2001). 
In particular, irrigation canals and the hedgerows 
around the plum orchard served as corridors along 
which the adults passed from one zone to another 
of the territory. The highest catches in the orchard 
were just at the point of contact with these corridors, 
highlighting the movements that occur between the 
plum orchard and a ravine, where there was an abun-
dance of blackthorn, another host plant of the insect.

For C. pomonella, the monitoring by means of 
pheromone traps, carried out in two agro-ecosystems 
with productive apple orchards and scattered trees of 
apple, pear, service, and walnut, highlighted a limited 
dispersion of adults in the territory; catches of male 
moths were clumped and the hot spots were confined 
to the productive apple orchards or in small groups 
of wild apple, pear, service, and walnut trees. The 
colonised areas were isolated from each other and this 
suggests that strips free of host plants around orchards 
may be an effective barrier against immigration from 

infested zones. In this case, a strip of 200–300 m was 
found to be an obstacle to the movement of the moth 
(Trematerra et al. 2004).

Use of traps

When attractive devices are used for a spatial 
monitoring scheme, some geostatistical properties 
must be taken into account (Perry et al. 2002): the 
extent, describing the dimension of the study area; 
the support, i.e. the sampling unit size correspond-
ing to the attractive range of the trap; the lag, i.e. 
the distance between the sampling units (Figure 2).

The grid of the traps will give different sampling 
results according to the following conditions:
– when lag > support, the experimental design allows 

a large individual movement (Figure 2A);
– when lag = support, the movement of individuals 

is more limited (Figure 2B);
– when lag < support, there may be an alteration in 

the spatial distribution because of the phenomena 
of mutual interference between traps (Figure 2C).

Figure 2. Possible situations that can occur during sam-
pling with attractive traps: A – lag > support, B – lag = 
support, C – lag < support. The circles represent the 
range of a trap, the black lines represent the trajectories 
of a moving individual

(A)

(B)

(C)
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Geostatistical techniques can help to establish the 
correct distance between monitoring devices. 

For example, Bacca et al. (2006) determined the 
optimal spacing of pheromone traps for monitoring 
the coffee leaf miner L. coffeella in a coffee planta-
tion, thus allowing an efficient trap distribution in 
the field, finding also a significant difference between 
the orthogonal directions of the plant rows.

Using experimental variograms, Epsky et al. (2010) 
determined the sampling range of a female-targeted 
protein-based attractant for the Mediterranean fruit 
fly Ceratitis capitata (Wiedemann) in various fruit 
crops; geostatistical results were confirmed by com-
bining a release-recapture experiment with the use 
of contour maps illustrating the spatial distribution 
of recaptured flies. 

Scale issues

Spatial patterns are usually strongly scale-depend-
ent and this is true also when the object of our in-
vestigations is a pest species. This means that the 
change in some measures of the pattern, i.e. extent, 
support and lag, will change in both the resolution 
and range of measurement (Schneider 1994).

After changing the scale, prevailing processes 
defining that particular pattern will be different 
and will consequently lead to different results. For 
example, if we study the spatial structure of a pest 
population at the within-field level, forces such as 
local population dynamics will dominate in our 
analysis . If we move to a landscape level, patch 
composition and metapopulation processes will 
prevail. At a regional level, other variables will act 
over the others, i.e. climatic features, altitudinal 
trend, genetic drift, etc.

The choice of the appropriate scale depends on the 
objective of our study. If we intend to understand the 
distribution of a pest inside an orchard for optimis-
ing control or monitoring actions, a sampling point 
grid will be deployed to cover every part of the field, 
including peripheral sectors to verify the presence 
of peculiar spatial patterns such as the border effect 
(van Helden 2010).

At this scale, fruit species and cultivars, in re-
lation to their spatial location and phenological 
phase, can have an important role in determining the 
spatio-temporal dynamics of pests, particularly the 
polyphagous ones. Studies on the spatio-temporal 
dynamics of C. capitata carried out to evaluate the 
effect of the host plants on the pest spatial distribu-
tion, in an agricultural landscape of 500 ha located 

in central Italy, showed that fruit flies were caught 
sequentially in orchards with host plants (i.e. peach, 
apple, pear, oriental persimmon, and prickly pear) at 
varying times of maturation, especially when the fruits 
remained on the trees (Sciarretta & Trematerra 
2011). Distributional maps provided evidence that 
made it possible to identify fruit species in which 
the fly developed early in the season (mixed peach 
orchards) and afterwards during the periodic flights.

The experimental design will be different if we 
want to identify sink and sources in an agricultural 
landscape. In this case, because spatial distribution 
can easily be affected by landscape composition, 
sampling strategies should be extended to cover the 
whole area and designed to adequately differentiate 
variable properties at each important landscape 
unit, including those in which we assume the pest is 
not present. In these cases, useful information will 
be obtained about the role played by host plants as 
potential sources of infestation outside the consid-
ered crops. In the case of the European grapevine 
moth Lobesia botrana (Den. & Shiff.), contour maps 
highlighted that adult spatial distribution was not 
limited to vineyards, but its presence was high inside 
olive groves, particularly during the first seasonal 
flight (Sciarretta et al. 2008).

The landscape structure, through the presence of 
elements such as hedgerows, uncultivated fields, 
streams, and woodlots, which act as barriers or eco-
logical corridors, can have a strong effect on the 
dispersion of the pest population. Examples on this 
topic were reported for G. funebrana, Grapholitha 
molesta (Busck), Anarsia lineatella (Z.), and C. po- 
monella (Sciarretta et al. 2001; Sciarretta & 
Trematerra 2006; Basoalto et al. 2010). The 
presence of overwintering sites outside deciduous 
orchards was reported to influence the colonisation 
and spread of leafhoppers into the orchards from 
the surrounding vegetation (Nestel & Klein 1995). 

At regional level, sampling points are often located 
at great distances (kilometres or more), and this 
hides the population dynamics occurring at lower 
scales. Studies at this level can have the objective of 
obtaining a general frame of the pest presence in a 
large area, but investigations can also be directed to 
verify spatial relationships of the pest with specific 
variables (Ayalew et al. 2008). For example, a study 
carried out on 160 000 ha in Catalonia, Spain, aimed 
at analysing the current codling moth pheromone 
trap spatial distribution and verifying the presence 
of anisotropic effects due to predominant wind di-
rections (Comas et al. 2012).



	 105

Plant Protect. Sci. Vol. 50, 2014, No. 2: 97–110

Precision targeting programs

The incorporation of spatial variability into an 
Integrated Pest Management program is called site-
specific IPM or precision targeting for IPM and relies 
on the use of maps showing a pest distribution, to 
be used to minimize direct control tactics (Weisz 
et al. 1995; Brenner et al. 1998). Such an approach 
follows the principles of precision agriculture, but in 
spite of the progress made by the latter in recent years 
(Oliver 2010), the practical development of site-
specific IPM programs is still limited today (Park 
et al. 2007; Sciarretta et al. 2011).

Among the difficulties in incorporating precision 
targeting into IPM are the identification of external 
infestation foci, the necessity to have aggregated 
populations with limited dispersal ability, and the 
high sampling costs, which are often not economi-
cally sustainable. Also, an evaluation of insecticide 
application costs, related to the site-specific versus 
whole field IPM, needs to be addressed.

The development of a site-specific IPM was car-
ried out against L. botrana in vineyards located in 
a hilly landscape in Italy (Sciarretta et al. 2011). 
In this case, two tactics were used: the first was 
directed at reducing the source of infestation from 
outside the vineyards, and specifically from the olive 
groves, which were found to host an important part 
of the pest population (Sciarretta et al. 2008), by 
establishing a pheromone trap barrier to prevent 
male movements into the vineyards. The second 
was to reduce the quantity of insecticides used and 
the treated area, focusing curative efforts towards 
the sectors of vineyard with the highest level of 
L. botrana oviposition, while excluding areas with 
low egg density. The results highlighted that male 
hot spots in olive groves disappeared, and that the 
number of larval nests on vine inflorescences was 
significantly decreased when additional traps were 
deployed, compared to the period before. The site-
specific control, i.e. treating only egg hot spots with 
Bacillus thuringensis var. kurstaki, allowed for a 
decrease in the surface of the vineyard treated and, 
consequently, the quantity of insecticide utilised; 
no significant damage differences between whole 
field and site-specific IPM in vineyards were ob-
served when treatments were carried out against 
both second and third L. botrana generations. An 
analysis of costs related to insecticide application in 
the field highlighted that the site-specific approach 
was economically advantageous, if compared to the 
whole field IPM, with greater damage to up to 1% of 

infested berries per bunch, covered by the saving of 
reduced treatments (Sciarretta et al. 2011).

Risk assessment maps

One of the possible outcomes of geostatistical 
analysis is the creation of risk assessment maps for 
pest management. Such an instrument has seen strong 
development especially in epidemiological studies, 
and maps can be obtained merging data from many 
different kinds of sources (Eisen & Eisen 2011). For 
example, a risk map for L. botrana was obtained by 
utilising three-year data on larval damage, with both 
the number of attacked berries per bunch and the 
percentage of infested bunches (Figure 3).

The utility of similar instruments in IPM programs 
was shown by Brenner et al. (1998), who gave details 
on using the indicator kriging to define and quantify 
areas that exceed predetermined action thresholds. In 
short, an indicator is a variable with values only of 1 or 
0, obtained by dividing our scale of counts into one or 
more thresholds. The interpolation of the indicator 
variable will give the distribution of the estimated 
probability that a sampling point placed in a specific 
location will exceed the established threshold.

Figure 4 illustrates the case of C. pomonella distribu-
tion in an apple orchard, where the indicator kriging was 

Figure 3. Risk map of the Lobesia botrana larval damage 
sampled in a 4.5 ha vineyard. An index, obtained multi-
pling the mean number of attacked berries per bunch and 
the percentage of infested bunches from 3-year data, was 
transformed in a scale with levels ranging from 0 (no risk) 
to 10 (maximum risk) and interpolated using ordinary 
kriging; x and y axes are expressed as UTM coordinates
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elaborated considering an action threshold of 2 males 
collected in a pheromone trap per week. In this case, 
the map provides support for selecting sectors of the 
orchard where correct positioning of a trap will give a 
reliable indication of the achievement of the threshold.

Future perspectives

Currently, many GIS softwares incorporate spatial 
analysis tools, including geostatistics, for producing 
distributional maps. The widespread use of GIS-based 
studies suggests that the utilisation of geostatistical 
methods will become more widespread in applied con-
texts and at different scales, making it easier to develop 
efficient local or regional pest management plans. 

The use of GIS technology today appears very 
promising in area-wide IPM programs, where ac-
tivities are conducted over large geographical areas, 
involving the use of decision support systems, taking 
into account the pest and beneficial species colo-
nisation and dispersal and evaluating the presence 
of environmental factors that, changing across the 
managed area, could affect the success of an IPM 
program (Faust 2008). Although there are some 
examples of the use of geostatistics in area-wide 
IPM programs (Tobin et al. 2004; Carrière et al. 
2006; Smith et al. 2006; De Luigi et al. 2011), their 
use in fruit orchard and vineyard protection is still 
very limited. At this regard, in a sterile insect release 
program initiated in British Columbia, Canada, in 
1992 and still active nowadays, to obtain an area-wide 
suppression of C. pomonella from its fruit-growing 
valleys (Okanagan-Kootenay SIR Program 2012), a 
GIS software combined with geostatistical analysis 
was developed for managing moth population and 

fruit damage data and to determine how key activi-
ties in the program could be streamlined (Vernon 
et al. 2001, 2006).

A further improvement may arise from models 
that better define spatio-temporal dynamics of a 
pest. In this regard, a promising approach is space-
time geostatistics, designed for variables that vary 
in both time and space. They involve the use of the 
variogram to characterize the variation along the time 
dimension as well as the spatial one (Heuvelink & 
van Egmond 2010). The difference with respect to 
the classical approach is that both these sources of 
variation are elaborated and their effects are taken 
into account, for example, to predict the target vari-
able at an unmeasured time by kriging. They are 
not intended as temporal forecasting models, but 
can provide predictions and be used to move from 
a series of freeze-frames to a continuous recording 
of the phenomenon under study. 

The problem of the high cost of pest management 
in a spatial context, especially for sampling, is cur-
rently the most serious constraint to the diffusion of 
geostatistical techniques in practice. This limitation 
may in part be overcome if efforts are directed to the 
development of intelligent Location-Aware Systems that 
allow automation of trapping devices and treatment 
operations (Wen et al. 2009; Pontikakos et al. 2012). 

Ultimately, an important shift may be achieved 
gradually as practices such as sustainable agricul-
ture, organic farming, zero-residue production, etc. 
gain more importance in the growing of high value 
crops, and as the environmental advantages of using 
a reduced or zero input of chemicals are incorpo-
rated as the added value in determining the final 
product price.

Figure 4. Distributional map of Cydia po-
monella weekly pheromone trap catches 
(on the left) and corresponding risk map 
obtained calculating the indicator kriging 
for an action threshold of 2 males per 
trap per week (on the right). Risk levels 
correspond to the estimated probability 
that a sampling point placed in a speci-
fic location will exceed the established 
threshold. Black areas are the best places 
where to put a monitoring trap
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