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Abstract
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Spatial heterogeneity in agricultural systems is recognised as an important source of variability to be investigated. In
the evolution of Integrated Pest Management (IPM), patterns and processes that influence spatio-temporal dynamics
in insect populations tend to assume more importance compared to the classical theory. Geostatistics represent a
valuable tool to investigate the spatial pattern of insect populations and to support pest control. After an explana-
tion of the geostatistical analysis, in the present paper we provided an overview of practical applications in managing
pests, focusing on fruit orchards and vineyards. The utility of geostatistical tools is illustrated with examples taken
from field studies, with attention to the analysis of spatial patterns, monitoring schemes, use of traps, scale issues,

precision targeting, and risk assessment maps. Potential approaches in the context of IPM are discussed in relation

to future perspectives.
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Agricultural systems are intrinsically heterogene-
ous. In fact, they contain variable arrangements of
soils, habitats, microclimatic features, plant com-
munities, and consequently they show an extensive
variability in soil fertility, water retention, crop pro-
ductivity, and so on. Basically, this is true also when
we consider single fields that are typically composed
of a central part and a border with many biotic and
abiotic parameters showing gradients and edge ef-
fects (VAN HELDEN 2010).

The same principles apply to insect populations. In
this case, spatial variation is caused by the interaction
between population dynamics on the one hand and
biotic or abiotic factors on the other. Processes that
influence the spatial heterogeneity include popula-
tion growth (reproduction, mortality) and dispersal
(immigration, colonisation, emigration). For exam-
ple, aggregations can be determined by the position
of initial immigrants influencing the behaviour of
other individuals/species through the emission of

pheromones or inducing the formation of new plant
volatiles. Similarly, the colonisation process is strongly
influenced by birth/death rates that differ locally, so
that the total population density in the whole field
will increase, while in limited areas population will
become extinct, leading to a clumped spatial pattern
(FLEISCHER et al. 1997).

At the landscape level, the fragmentation of farm-
land has resulted in a scattered resource distribution
that strongly enhances the importance of landscape
structure in determining the final spatial pattern of
a pest inside and outside a crop field. In fact, the dis-
tribution of host plants, including alternative hosts,
will influence the short-distance foraging flights of
herbivores, and often also the dispersal of predators
and parasitoids (MAzz1 & DorN 2012). In the same
way, the location of overwintering sites will determine
the reinvasion pattern in the following season.

In the past, many efforts have been dedicated to
improving the efficiency in the design of agricultural

97



Vol. 50, 2014, No. 2: 97-110

Plant Protect. Sci.

experiments minimizing the residual variability that
in field trials is due mainly to the spatial hetero-
geneity. The strong advance of the space issue in
biological sciences has arisen from the recognition
that spatial variability, or patchiness, is widespread
in natural populations and this characteristic is an
interesting quantity rather than a statistical nuisance
to be overcome (SCHNEIDER 1994).

In the new evolution of Integrated Pest Manage-
ment (IPM) concepts, the spatial variation in pest
populations tends to assume more and more im-
portance compared to the classical theory. In site-
specific IPM, the heterogeneity at the single field
level is analyzed with the aim of optimizing chemical
treatments (PARK et al. 2007). In area-wide IPM, the
importance of managing the whole pest population
at landscape or regional level is emphasised, for ex-
ample by identifying pest shelters inside and outside
crops (HENDRICHS et al. 2007). As a matter of fact,
however, incorporation of the spatial component in
management plans is still isolated in practice.

In these contexts, geostatistics represent a valu-
able set of statistical tools to investigate the spatial
pattern of pests and to support the facilitation of
practical pest control applications.

In the present paper we provide an overview of
geostatistical applications in the study of insect
spatial distribution, focusing on fruit orchards and
vineyards, and their utility in managing pests is il-
lustrated with examples taken from field studies.
Potential approaches in the context of IPM are also
discussed in relation to possible future perspectives.

GEOSTATISTICS

After the advent of calculators for the capture
and elaboration of experimental data, largely ac-
cessible today thanks to new technologies such as
personal computers, GPS, remote sensing, and GIS
tools, statistical approaches that incorporate space
in the elaboration have found new applications in
many science subjects. In this context, a major role
is played by geostatistics, first developed for mining
explorations and then adopted by many environmental
disciplines such as agriculture, hydrology, meteorol-
ogy, soil sciences, fisheries, forestry, epidemiology,
landscape ecology, environmental pollution, and
risk assessment.

Geostatistics are a collection of statistical methods
analyzing spatial dependence among samples (auto-
correlation) and obtaining estimates of the variable
under study at unsampled locations. For a detailed
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description of the general theory and principles, re-
fer, among others, to CRESSIE (1993), WEBSTER and
OLIVER (2001), and CHILES and DELFINER (2012).
Various internet sources are available for both begin-
ners and experts to this subject; for an overview of
geostatistical methods implemented in real applica-
tions, it is possible to consult the active list service
of AI_GEOSTAT (1995) or the website of GeoENVia
Association (2011), that organize every two years
the International Conference on Geostatistics for
Environmental Applications.

In brief, the main steps in the geostatistical analy-
sis are:

(1) Exploratory data analysis. Some elementary
statistical analysis is useful to highlight general char-
acteristics of data. Normality of data distribution can
be evaluated using histograms and box-plots or by
calculating some coefficient of asymmetry. Skewed
variables often show a proportional effect, i.e., a
higher variability in high valued areas and a lower
variability in low valued areas that distort variogram
results (MANCHUK et al. 2009). Although formally
not required, a normal distribution of data improves
the autocorrelation analysis and can be achieved
with a logarithm transformation.

(2) Estimation and modelling of spatial autocor-
relation. To evaluate the spatial variation, different
tools can be used, analyzing correlation coefficient
(in correlograms), covariance (in covariance func-
tions) or variance (in semivariograms). On choosing
between these methods in ecological applications,
see RosslI et al. (1992). Next, we will refer mainly to
semivariograms, the most commonly used method
in geostatistics.

The experimental variogram is a graph of dis-
crete points at particular lag intervals, showing the
semivariance of sample pairs against the distance
between sampling points. The semivariance y for
lag distance % is given by:

N(h)
Yy =—2— ) lalx) — 2(x, + b))

2N(h) Tiar
where:
z(x,) — measured sample point at x;,
z(x, + h) — measured sample at point x, + &
N(h) — number of pairs separated by the lag &

Because these estimates can strongly fluctuate
from point to point due to sampling errors, a model
describing the spatial variation must be fitted. Among
the approaches available for use there are exponential,
spherical, linear, polynomial, and Gaussian functions
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that can also be combined to obtain nested models
(PANNATIER 1996). Figure 1 illustrates key features of
a semivariogram: the nugget is the y-axis intercept;
the sill is the point at which variance no longer in-
creases; the range corresponds to the distance where
the sill is reached. Differences in spatial variation
with geographical direction are known as anisotropy:
a diverse semivariogram model can be produced for
each considered direction. A geostatistical rule of
thumb is that each lag interval must be represented
by at least 30 pairs of points (JOURNEL & HUIJBREGTS
1978). This means that a minimum number of 25-30
sample units is required to obtain variograms with
4-5 lag classes, but often more points are neces-
sary to accurately estimate sample pair variances
(NANSEN et al. 2003). WEBSTER and OLIVER (1992)
pointed out that a minimum number of 100 sam-
pling points is needed to give reliable results, but
in a practical context it is often necessary to work
with many fewer points. Semivariogram modelling
is not an easy exercise and much practice should be
devoted to this analysis. For more information on
these techniques and interpretation of results, consult
IsaAKs and SRIVASTAVA (1989) and CRESSIE (1993)
for a general overview, and OLIVER (2010) for their
use in an agricultural context.

(3) Estimation of a surface area using interpola-
tion procedures. In geostatistics we can define the
interpolation as a method of value estimation and/or
prediction at unsampled locations in the geographi-
cal space. The objective of interpolation is to create
continuous surfaces based on point samples. Many
different methods are available, both deterministic
and probabilistic, based on the mathematical algo-
rithms used to compute the weights to be assigned
during the interpolation; examples are triangulation,
inverse distance weighted, natural neighbour, kriging,
radial basis function, and also more sophisticated
Bayesian techniques, such as the stochastic condi-
tional simulation (RossI et al. 1993).

The ordinary kriging is considered the best linear
unbiased predictor and is by far the most utilised.
The estimated Z at unsampled location x, is:

Z(xy) =), w,(x,) Z(x,)
i=1

where:
w;  — weight calculated for the sampled location ,
Z(x,) — observed value at x;

n — number of locations

The kriging weights depend on both the spatial
autocorrelation measured in variograms and the

spatial configuration of the sample points around the
prediction location. Various forms of kriging have
been developed to accommodate different types of
data (i.e. block kriging for mean values from local
areas, universal kriging when a spatial trend is de-
tected, indicator kriging for binary data, cokriging for
two or more variables spatially autocorrelated, etc.).

When insect populations are sampled, it is very
common to obtain count data with many zeros. In
these cases, indicator kriging represents an alternative
choice. More detailed information on this method is
reported in the paragraph “Risk assessment maps”.

It is possible to assess the quality of interpolation
by computing the errors (interpolated value minus
observed value) and applying the cross-validation
procedure; various statistics can be used as a quan-
titative measure of quality. For more information
on geostatistical interpolation techniques, refer to
Isaaks and SRIVASTAVA (1989) and CRESSIE (1993).

Different kinds of maps can be generated to visualise
the results of the interpolation process, such as con-
tour maps, surface maps, image maps or wireframes,
where the variable densities are represented as dif-
ferent lines, colours, shadows or in 3 dimensions. A
base map can be overlaid to show landscape features.

SAMPLING

Geostatistics represent a significant change in the
methodology of sampling. In fact, traditionally we
need to have independent data and sampling plans
are designed to avoid correlations. On the contrary,
geostatistics look for autocorrelations, and so sam-
pling plans became less restrictive (SHAROV 1997).
Moreover, the final objective of a geostatistical survey
is not to obtain the estimation of a mean, as in classic
plans, but to map the spatial variability of samples.
For example, areas that are avoided because they
might be a source of bias, such as field edges, become
primary areas to be explored. Similarly, areas usually
discarded because they are considered to be without
or with a low pest presence, should be included: in
a geostatistical survey, areas at zero levels are as im-
portant as high density areas (BRENNER et al. 1998).

Nonetheless, new aspects arise that must be con-
sidered in spatially explicit surveys. It is known that
precision, which indicates how well the mean is
estimated, increases with sampling size (FLEISCHER
et al. 1997). Classically, sampling plans are designed
to balance such precision with the costs of sampling;
in this case many sampling units are evaluated in the
field and they are used to obtain a unique mean. In
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geostatistical applications, a large number of sample
units are needed to perform a variogram analysis,
but sampling units are evaluated individually at each
location and this results in a poor local estimate. This
effect is more accentuated when the distribution
is aggregated — a very common condition in pest
populations. In such a situation, clusters of sampling
units and interpolation data with block kriging can
be a solution, but the costs of large sample sizes are
often prohibitive (FLEISCHER et al. 1997).

In general, irregularly spaced sampling points are
not a problem, especially for kriging interpolation
and this characteristic gives some freedom in setting
up a sampling design, but the orientation, scale, and
arrangement of sampling units can still influence the
result of geostatistical analysis. Moreover, an optimal
sampling scheme for variography can be different
from that designed for kriging interpolation, so the
final purpose of our survey should be clear when the
sampling plan is arranged (MARCHANT & LARK 2012).

Various classical sampling schemes can be adopted,
such as simple random, stratified random, cluster,
nested or systematic sampling (WOLLENHAUPT et al.
1997). Among them, systematic design is generally
considered more precise than simple or stratified
random (WEBSTER & OLIVER 1990), but it must be
remembered that in fruit orchards and vineyards
there is usually a regular pattern composed of plants
positioned at fixed distances within and between
rows, and this can strongly influence geostatisti-
cal elaborations. ScHoTzKO and O’KEEFE (1990),
evaluating the effect of sample placement on the
geostatistical analysis of Lygus hesperus Knight in
lentils, considered a staggered grid to give a better
map precision than a uniform grid.

In the case of insects, very often no prior informa-
tion is available, the variation is complex and the
scale of the phenomenon is unknown. An exploratory
survey of spatial variation can help to select the ap-
propriate size, number, and location of observations
(BALDACCHINO ef al. 2012; MARCHANT & LARK
2012), but in practical situations it can rarely be
done. In similar situations, it is possible to use e.g.
a cluster sampling, where clusters of individual units
are selected at random and each unit in the cluster is
measured; this approach fits particularly well when
populations tend to be clustered (GILBERT 1987).
Another possibility is the nested survey, where, fol-
lowing a classification, clusters are subdivided, then
the subdivisions are randomly selected and further
subdivided until the smallest units are identified
(WOLLENHAUPT et al. 1997). This approach allows the
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exploration of several orders of magnitude of spatial
scale in a single analysis (KERRY et al. 2012). BAccA et
al. (2008) used a cluster sampling plan to interpolate
and simulate the male leaf miner Leucoptera coffeella
(Guérin-Méneville & Perrottet) distribution at differ-
ent trap densities in a coffee plantation.

Another approach can be the adaptive survey,
consisting of changing sampling efforts in the space,
according to the data collected earlier (THOMSON
1990). An example of insect adaptive surveys, related
to tsetse fly population, is provided by SCIARRETTA
et al. (2005).

PRACTICAL APPLICATIONS

After the first studies carried out in North America
to investigate the distribution of Pectinophora gos-
sypiella (Saunders) in cotton, L. hesperus in len-
til fields, and grasshoppers in uncultivated areas
(BorRTH & HUBER 1987; KEMP et al. 1989; SCHOTZKO
& O’KEEFEE 1989), geostatistics have seen many
applications in various fields of crop protection
against worms or arthropods pests (for more details
see LIEBHOLD et al. 1993; BRENNER et al. 1998; AR-
BOGAST et al. 2000; BRANDHORST-HUBBARD et al.
2001; PARK et al. 2007; SCIARRETTA & TREMATERRA
2009; WEBSTER 2010) and, in a few cases, to highlight
predator and parasitoid distribution (KARIMZADEH
et al. 2011; PERoVI¢ & GURR 2012).

One of the most significant examples of applica-
tions in this field was carried out over the last two
decades in the eastern United States against the gypsy
moth Lymatria dispar (L.), which was introduced in
North America from Europe in 1869 (LIEBHOLD et
al. 1989). Pheromone trap catches and egg mass data
were analysed using geostatistical tools at regional
scale to model the gypsy moth spatial dynamics, with
the aim of: delimiting the boundary of pest disper-
sion, estimating the spread rate at the expanding
population front, forecasting the spatial dynamics
of moth outbreaks, predicting the larval defoliation
levels, and evaluating the treatment effects (L1EB-
HOLD et al. 1991, 1998; HOHN et al. 1993; SHAROV
et al. 1995; ToBIN et al. 2004, 2007).

Examples of practical applications focusing on
fruit orchard and vineyard insect pests are reported
in Table 1.

Analysis of spatial patterns

Because spatial variation is due to so many fac-
tors, generalisation about the causes of patchiness
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in insect populations is very problematic; often it
is not possible to understand the main factors de-
termining the spatial pattern in a specific context
or to predict a priori any form of distribution (VAN
HEeLDEN 2010). Often, each orchard is unique and the
features of experimental variograms are not the same
also for neighbouring fields. Further, the distribution
can change according to the insects’ developmental
stage, the season, the phenological status of the crop,
and the weather conditions. For example, alternat-
ing periods of clumped and random patterns were
observed to be recurrent in fruit orchards and vine-
yards for leathoppers, thrips, and fruit flies (NESTEL
& KLEIN 1995; PAPADOPOULOS et al. 2003; FARIAS
et al. 2004; DECANTE & VAN HELDEN 2008; RHODES
et al. 2011). Consequently, in situ observations are
necessary to depict the spatio-temporal dynamics
of a pest and descriptive maps must be developed
to have a visual representation of pest presence in
the agro-ecosystem.

The study of spatial variation patterns is crucial
from this point of view and the features of semivari-
ograms give us much information about the spatial
structure of our data.

An asymptotic function indicates an aggregated
insect distribution and the range represents ap-
proximately the extension of hot spots (areas of ag-

gregation); on the contrary, linear functions indicate
a uniform/random distribution, with the random
component increasing with the increase of the vari-
ance variability; when the slope is near to zero we
obtain a pure nugget effect, indicating a complete
lack of any autocorrelation and a pure random dis-
tribution (ScHoTZKO & O’KEEFE 1989).

A zero nugget indicates a strong confidence in
sample data, while the presence of a nugget repre-
sents two sources of variability: the micro variance
occurring at a scale smaller than the minimum lag
distance and the measurement error.

Figure 1 shows common types of variograms un-
derlying different insect distributions. An index
that can summarize the level of randomness is the
k parameter, defined as the ratio between the nugget
and the sill, and this indicates the degree of spatial
dependence measured in the variogram (JOURNEL
& HUIJBREGTS 1978). Values below 0.8 indicate that
the distribution is aggregated; as the k parameter
approaches zero, the level of spatial dependence will
become greater.

Monitoring schemes

Monitoring pest population is a key issue in IPM
schemes. The objectives of monitoring are to detect
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Figure 1. Variogram shapes of different Anarsia lineatella weekly pheromone trap catches and maps of the correspon-

ding spatial distribution in the investigated agro-ecosystem: A — clumped distribution without nugget, B — clumped

distribution with nugget, C — random distribution
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the presence or absence of pests and quantify their
abundance (and/or their natural enemies) through
time and space. Follow the spatio-temporal dynam-
ics of the population by regular, periodic sampling,
monitoring allows us to reach a decision as to whether,
when and where a pest population requires a control
action.

In this context, geostatistics applied to a grid of
monitoring points allows us to obtain a map providing
useful information on the pest spatial distribution,
in particular:

— origin of infestations in the investigated agro-
ecosystem, both inside and outside the considered
crops;

— position and temporal dynamics of hot spots;

— role played by cultivated and wild host plants as
potential sources of infestation;

— effect of landscape structure on the dispersal of
the pest population.

As an example, we report the studies conducted on
the distribution of Grapholita funebrana Treitschke
and Cydia pomonella L. in two heterogeneous agro-
ecosystems of central Italy (SCIARRETTA et al. 2001;
TREMATERRA et al. 2004).

In the case of G. funebrana, pheromone trapping
was carried out inside a 12-ha plum orchard and to
the surrounding area, covering a surface of about
250 ha. The results revealed a distribution strongly
influenced by the fragmented structure of the land-
scape and the presence and dissemination of host
plants in the area investigated, where adults showed a
strong capacity for dispersal and movement between
elements of the landscape (SCIARRETTA et al. 2001).
In particular, irrigation canals and the hedgerows
around the plum orchard served as corridors along
which the adults passed from one zone to another
of the territory. The highest catches in the orchard
were just at the point of contact with these corridors,
highlighting the movements that occur between the
plum orchard and a ravine, where there was an abun-
dance of blackthorn, another host plant of the insect.

For C. pomonella, the monitoring by means of
pheromone traps, carried out in two agro-ecosystems
with productive apple orchards and scattered trees of
apple, pear, service, and walnut, highlighted a limited
dispersion of adults in the territory; catches of male
moths were clumped and the hot spots were confined
to the productive apple orchards or in small groups
of wild apple, pear, service, and walnut trees. The
colonised areas were isolated from each other and this
suggests that strips free of host plants around orchards
may be an effective barrier against immigration from

infested zones. In this case, a strip of 200-300 m was
found to be an obstacle to the movement of the moth
(TREMATERRA et al. 2004).

Use of traps

When attractive devices are used for a spatial
monitoring scheme, some geostatistical properties
must be taken into account (PERRY et al. 2002): the
extent, describing the dimension of the study area;
the support, i.e. the sampling unit size correspond-
ing to the attractive range of the trap; the lag, i.e.
the distance between the sampling units (Figure 2).

The grid of the traps will give different sampling
results according to the following conditions:
—when lag > support, the experimental design allows

a large individual movement (Figure 2A);

— when lag = support, the movement of individuals
is more limited (Figure 2B);

— when lag < support, there may be an alteration in
the spatial distribution because of the phenomena
of mutual interference between traps (Figure 2C).

00Qo
0000
0000

(B)

Figure 2. Possible situations that can occur during sam-
pling with attractive traps: A — lag > support, B — lag =
support, C — lag < support. The circles represent the
range of a trap, the black lines represent the trajectories
of a moving individual

103



Vol. 50, 2014, No. 2: 97-110

Plant Protect. Sci.

Geostatistical techniques can help to establish the
correct distance between monitoring devices.

For example, BAccaA et al. (2006) determined the
optimal spacing of pheromone traps for monitoring
the coffee leaf miner L. coffeella in a coffee planta-
tion, thus allowing an efficient trap distribution in
the field, finding also a significant difference between
the orthogonal directions of the plant rows.

Using experimental variograms, EPsKy et al. (2010)
determined the sampling range of a female-targeted
protein-based attractant for the Mediterranean fruit
fly Ceratitis capitata (Wiedemann) in various fruit
crops; geostatistical results were confirmed by com-
bining a release-recapture experiment with the use
of contour maps illustrating the spatial distribution
of recaptured flies.

Scale issues

Spatial patterns are usually strongly scale-depend-
ent and this is true also when the object of our in-
vestigations is a pest species. This means that the
change in some measures of the pattern, i.e. extent,
support and lag, will change in both the resolution
and range of measurement (SCHNEIDER 1994).

After changing the scale, prevailing processes
defining that particular pattern will be different
and will consequently lead to different results. For
example, if we study the spatial structure of a pest
population at the within-field level, forces such as
local population dynamics will dominate in our
analysis. If we move to a landscape level, patch
composition and metapopulation processes will
prevail. At a regional level, other variables will act
over the others, i.e. climatic features, altitudinal
trend, genetic drift, etc.

The choice of the appropriate scale depends on the
objective of our study. If we intend to understand the
distribution of a pest inside an orchard for optimis-
ing control or monitoring actions, a sampling point
grid will be deployed to cover every part of the field,
including peripheral sectors to verify the presence
of peculiar spatial patterns such as the border effect
(vAN HELDEN 2010).

At this scale, fruit species and cultivars, in re-
lation to their spatial location and phenological
phase, can have an important role in determining the
spatio-temporal dynamics of pests, particularly the
polyphagous ones. Studies on the spatio-temporal
dynamics of C. capitata carried out to evaluate the
effect of the host plants on the pest spatial distribu-
tion, in an agricultural landscape of 500 ha located
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in central Italy, showed that fruit flies were caught
sequentially in orchards with host plants (i.e. peach,
apple, pear, oriental persimmon, and prickly pear) at
varying times of maturation, especially when the fruits
remained on the trees (SCIARRETTA & TREMATERRA
2011). Distributional maps provided evidence that
made it possible to identify fruit species in which
the fly developed early in the season (mixed peach
orchards) and afterwards during the periodic flights.

The experimental design will be different if we
want to identify sink and sources in an agricultural
landscape. In this case, because spatial distribution
can easily be affected by landscape composition,
sampling strategies should be extended to cover the
whole area and designed to adequately differentiate
variable properties at each important landscape
unit, including those in which we assume the pest is
not present. In these cases, useful information will
be obtained about the role played by host plants as
potential sources of infestation outside the consid-
ered crops. In the case of the European grapevine
moth Lobesia botrana (Den. & Shiff.), contour maps
highlighted that adult spatial distribution was not
limited to vineyards, but its presence was high inside
olive groves, particularly during the first seasonal
flight (SCIARRETTA et al. 2008).

The landscape structure, through the presence of
elements such as hedgerows, uncultivated fields,
streams, and woodlots, which act as barriers or eco-
logical corridors, can have a strong effect on the
dispersion of the pest population. Examples on this
topic were reported for G. funebrana, Grapholitha
molesta (Busck), Anarsia lineatella (Z.), and C. po-
monella (SCIARRETTA et al. 2001; SCIARRETTA &
TREMATERRA 2006; BAsoALTO et al. 2010). The
presence of overwintering sites outside deciduous
orchards was reported to influence the colonisation
and spread of leafhoppers into the orchards from
the surrounding vegetation (NESTEL & KLEIN 1995).

Atregional level, sampling points are often located
at great distances (kilometres or more), and this
hides the population dynamics occurring at lower
scales. Studies at this level can have the objective of
obtaining a general frame of the pest presence in a
large area, but investigations can also be directed to
verify spatial relationships of the pest with specific
variables (AYALEW et al. 2008). For example, a study
carried out on 160 000 ha in Catalonia, Spain, aimed
at analysing the current codling moth pheromone
trap spatial distribution and verifying the presence
of anisotropic effects due to predominant wind di-
rections (CoMAsS et al. 2012).
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Precision targeting programs

The incorporation of spatial variability into an
Integrated Pest Management program is called site-
specific IPM or precision targeting for IPM and relies
on the use of maps showing a pest distribution, to
be used to minimize direct control tactics (WEISZ
et al. 1995; BRENNER et al. 1998). Such an approach
follows the principles of precision agriculture, but in
spite of the progress made by the latter in recent years
(OL1VER 2010), the practical development of site-
specific IPM programs is still limited today (PARK
et al. 2007; SCIARRETTA et al. 2011).

Among the difficulties in incorporating precision
targeting into IPM are the identification of external
infestation foci, the necessity to have aggregated
populations with limited dispersal ability, and the
high sampling costs, which are often not economi-
cally sustainable. Also, an evaluation of insecticide
application costs, related to the site-specific versus
whole field IPM, needs to be addressed.

The development of a site-specific IPM was car-
ried out against L. botrana in vineyards located in
a hilly landscape in Italy (SCIARRETTA ef al. 2011).
In this case, two tactics were used: the first was
directed at reducing the source of infestation from
outside the vineyards, and specifically from the olive
groves, which were found to host an important part
of the pest population (SCIARRETTA et al. 2008), by
establishing a pheromone trap barrier to prevent
male movements into the vineyards. The second
was to reduce the quantity of insecticides used and
the treated area, focusing curative efforts towards
the sectors of vineyard with the highest level of
L. botrana oviposition, while excluding areas with
low egg density. The results highlighted that male
hot spots in olive groves disappeared, and that the
number of larval nests on vine inflorescences was
significantly decreased when additional traps were
deployed, compared to the period before. The site-
specific control, i.e. treating only egg hot spots with
Bacillus thuringensis var. kurstaki, allowed for a
decrease in the surface of the vineyard treated and,
consequently, the quantity of insecticide utilised;
no significant damage differences between whole
field and site-specific IPM in vineyards were ob-
served when treatments were carried out against
both second and third L. botrana generations. An
analysis of costs related to insecticide application in
the field highlighted that the site-specific approach
was economically advantageous, if compared to the
whole field IPM, with greater damage to up to 1% of

infested berries per bunch, covered by the saving of
reduced treatments (SCIARRETTA et al. 2011).

Risk assessment maps

One of the possible outcomes of geostatistical
analysis is the creation of risk assessment maps for
pest management. Such an instrument has seen strong
development especially in epidemiological studies,
and maps can be obtained merging data from many
different kinds of sources (E1SEN & EISEN 2011). For
example, a risk map for L. botrana was obtained by
utilising three-year data on larval damage, with both
the number of attacked berries per bunch and the
percentage of infested bunches (Figure 3).

The utility of similar instruments in IPM programs
was shown by BRENNER et al. (1998), who gave details
on using the indicator kriging to define and quantify
areas that exceed predetermined action thresholds. In
short, an indicator is a variable with values only of 1 or
0, obtained by dividing our scale of counts into one or
more thresholds. The interpolation of the indicator
variable will give the distribution of the estimated
probability that a sampling point placed in a specific
location will exceed the established threshold.

Figure 4 illustrates the case of C. pomonella distribu-
tion in an apple orchard, where the indicator kriging was
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Figure 3. Risk map of the Lobesia botrana larval damage
sampled in a 4.5 ha vineyard. An index, obtained multi-
pling the mean number of attacked berries per bunch and
the percentage of infested bunches from 3-year data, was
transformed in a scale with levels ranging from 0 (no risk)
to 10 (maximum risk) and interpolated using ordinary
kriging; x and y axes are expressed as UTM coordinates
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Figure 4. Distributional map of Cydia po-
monella weekly pheromone trap catches
(on the left) and corresponding risk map
obtained calculating the indicator kriging
for an action threshold of 2 males per
trap per week (on the right). Risk levels
correspond to the estimated probability
that a sampling point placed in a speci-
fic location will exceed the established
threshold. Black areas are the best places

where to put a monitoring trap
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elaborated considering an action threshold of 2 males
collected in a pheromone trap per week. In this case,
the map provides support for selecting sectors of the
orchard where correct positioning of a trap will give a
reliable indication of the achievement of the threshold.

FUTURE PERSPECTIVES

Currently, many GIS softwares incorporate spatial
analysis tools, including geostatistics, for producing
distributional maps. The widespread use of GIS-based
studies suggests that the utilisation of geostatistical
methods will become more widespread in applied con-
texts and at different scales, making it easier to develop
efficient local or regional pest management plans.

The use of GIS technology today appears very
promising in area-wide IPM programs, where ac-
tivities are conducted over large geographical areas,
involving the use of decision support systems, taking
into account the pest and beneficial species colo-
nisation and dispersal and evaluating the presence
of environmental factors that, changing across the
managed area, could affect the success of an IPM
program (FAusT 2008). Although there are some
examples of the use of geostatistics in area-wide
IPM programs (TOBIN et al. 2004; CARRIERE et al.
2006; SMITH et al. 2006; DE LuiGI et al. 2011), their
use in fruit orchard and vineyard protection is still
very limited. At this regard, in a sterile insect release
program initiated in British Columbia, Canada, in
1992 and still active nowadays, to obtain an area-wide
suppression of C. pomonella from its fruit-growing
valleys (Okanagan-Kootenay SIR Program 2012), a
GIS software combined with geostatistical analysis
was developed for managing moth population and
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fruit damage data and to determine how key activi-
ties in the program could be streamlined (VERNON
et al. 2001, 2006).

A further improvement may arise from models
that better define spatio-temporal dynamics of a
pest. In this regard, a promising approach is space-
time geostatistics, designed for variables that vary
in both time and space. They involve the use of the
variogram to characterize the variation along the time
dimension as well as the spatial one (HEUVELINK &
vaN EGMOND 2010). The difference with respect to
the classical approach is that both these sources of
variation are elaborated and their effects are taken
into account, for example, to predict the target vari-
able at an unmeasured time by kriging. They are
not intended as temporal forecasting models, but
can provide predictions and be used to move from
a series of freeze-frames to a continuous recording
of the phenomenon under study.

The problem of the high cost of pest management
in a spatial context, especially for sampling, is cur-
rently the most serious constraint to the diffusion of
geostatistical techniques in practice. This limitation
may in part be overcome if efforts are directed to the
development of intelligent Location-Aware Systems that
allow automation of trapping devices and treatment
operations (WEN et al. 2009; PONTIKAKOS et al. 2012).

Ultimately, an important shift may be achieved
gradually as practices such as sustainable agricul-
ture, organic farming, zero-residue production, etc.
gain more importance in the growing of high value
crops, and as the environmental advantages of using
a reduced or zero input of chemicals are incorpo-
rated as the added value in determining the final
product price.
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