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Abstract: Agricultural practices depend mainly on the use of chemical fertilisers, pesticides, and herbicides which have
caused serious health hazards and have also contributed to the pollution of the environment at large. The application
of plant-beneficial rhizobacteria in agrarian practices has become paramount in increasing soil fertility, promoting plant
growth, ensuring food safety, and increasing crop production to ensure sustainable agriculture. Beneficial rhizobacteria
are soil microorganisms that are eco-friendly and serve as a modern method of improving the plant yield, protecting
the plant and soil fertility that pose no harm to humans and the environment. This eco-friendly approach requires the
application of beneficial rhizobacteria with plant growth-promoting traits that can improve the nutrient uptake, enhan-
ce the resistance of plants to abiotic and biotic stress, protect plants against pathogenic microorganisms and promote
plant growth and yield. This review article has highlighted the multitasking roles that beneficial rhizobacteria employ
in promoting plant growth, food production, bioremediation, providing defence to plants, and maintaining soil ferti-
lity. The knowledge acquired from this review will help in understanding the bases and importance of plant-beneficial

rhizobacteria in ensuring agricultural sustainability and as an alternative to the use of agrochemicals.
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Agriculture greatly contributes to the nation-
al income and earnings in developing countries,
in a quest to ensure food security and employment.
The act of practicing sustainable agriculture is cru-
cial in the world today because it meets the need
for more food production in the agricultural sec-
tor. The traditional method of practicing agriculture
that involves the use of agrochemicals that are harm-
ful to human health and the ecological system will
not be able to meet the agricultural demand, because
its harmful effects will keep increasing as the hu-
man population increases (Enagbonma & Babalola
2019b). The rhizosphere is a region of the soil where
microbiological activity takes place as a result of the
release of different kinds of plant metabolites called
root exudates. These root exudates are made up

of various vitamins, proteins, sugars, and amino ac-
ids that are important to microorganisms that dwell
in the rhizosphere. Various types of plant-beneficial
microorganisms live in the soil and interact with
plants and other types of microorganisms (Igiehon &
Babalola 2018). Large numbers of rhizobacteria with
plant growth-promoting traits and other beneficial
microorganisms' growth are supported in the rhizos-
phere (Bhattacharyya & Jha 2012, Shoaib et al. 2016).

The major problems that have caused a reduction
in the crop yields worldwide among farmers are soil
infertility, heavy metal contamination, and the infes-
tation of plants by pathogenic microorganisms (Gou-
da et al. 2018). This challenge could be tackled by im-
proving the quality of the soil through a reduction
in land degradation and encouraging the application
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of plant-beneficial rhizobacteria as bioinoculants
which require knowledge of good agricultural prac-
tices. It was reported by Mfilinge et al. (2014) that the
major challenge facing the farming system is a re-
duction in the crop productivity. These low yields
in most cereal and leguminous crops can be associ-
ated with a reduction in the soil fertility as well as at-
tacks by pathogenic microorganisms. The microor-
ganisms that live in the root region of a plant serve
a beneficial purpose to theplant by improving its de-
velopment and protection (Barea 2015). Rhizobac-
teria are among these beneficial organisms that can
fix atmospheric nitrogen and phosphate solubilisers
which are beneficial to plants (Bharti & Barnawal
2019). The application of agrochemicals has con-
tributed to increasing the food production, but it
has resulted in the pollution of water bodies, the air
and has a deleterious effect on human health (Alori
et al. 2017b; Ojuederie et al. 2019). Similarly, the ap-
plication of agrochemicals has also increased the soil
acidification (Gupta et al. 2015). The soil properties,
soil fertility, structure, water holding capacity and
diversity of the beneficial soil microorganisms have
also been affected as a result of the prolonged use
of agrochemicals (Enagbonma & Babalola 2019a).
Considering the deleterious effect of agrochemicals
on humans, plant health and the environment, which
will keep increasing with an increase in the human
population, there is a need for alternative methods
of increasing the soil fertility, preventing pathogen
attacks, and also improving food production, which
should be inexpensive and should constitute no harm
to humans, or the abiotic and biotic components (Ig-
iehon & Babalola 2017; Pathak et al. 2018). The pa-
rameters used to access a plant's health the function
and structure of the microorganisms that live within
the soil (Zhu et al. 2017). The potential role that ben-
eficial rhizobacteria can play is the transformation
of carbon-based organic materials that enhance
plant health and promote sustainable agriculture
(Olanrewaju et al. 2017).

Therefore, there is a need for the biological means
of promoting plant growth and controlling attacks
by pathogenic microorganisms which constitute one
of the potential solutions and also play a crucial func-
tion in improving the crop yield and meeting the chal-
lenges caused by the application of agrochemicals.

Plant-beneficial rhizobacteria inoculants are prep-
arations containing cells of efficient rhizobacteria
strains that can be applied to the soil or plants to in-
crease the metabolic processes in the plants by pro-

96

https://doi.org/10.17221/130/2020-PPS

viding the plants with the nutrients that will enhance
their growth and also serve as a defence for the plants
against microbial pathogens and pests. This review
summarises the beneficial role played by beneficial
rhizobacteria as environmentally friendly and in-
expensive microbial inoculants in improving plant
growth, reducing heavy metal contamination, and
controlling phytopathogens to ensure sustainable
agriculture.

Agrochemical impact on the environment and
human health

A large number of people are engaged in farm-
ing using agrochemicals to increase food produc-
tion, which results in the consumption of contami-
nated farm products by the final consumer, which
could constitute a health hazard and a reduction
in the diversity of soil microorganisms that are ben-
eficial to promote plant health and development (Al-
ori et al. 2017a). The runoff of these agrochemicals
also contributes to surface water and groundwater
contamination (Burant et al. 2018). The major ways
through in which these agrochemicals that are ap-
plied to plants find their way into the human body
and constitute health problems are through inha-
lation, penetration through the skin, and through
the consumption of food products (Roychowdhury
et al. 2014). Several health hazards that affect farm-
ers and consumers of farm products have been re-
corded as a result of the use of agrochemicals. These
include respiratory disorders, skeletal problems, and
diseases that are related to the skin (Singh et al. 2018).
The major contributing factor why the negative ef-
fects of using agrochemicals are more pronounced is
inadequate knowledge of the precautions to be taken
during application of the agrochemicals, especially
those that are hazardous, and their effect in limiting
the potential of the beneficial soil microbiota because
only a few of these farmers have been trained on
the harm attached to the application of agrochemi-
cals and the preventive measures to take during appli-
cation (Magauzi et al. 2011; Bhandari 2014). A report
by the United States Environmental Protection Agen-
cy in 2016 has shown that, in some developing coun-
tries where the use of agrochemicals is high, there
are health problem issues in the population. The ma-
jor factors that cause the increase in health hazards
due to the use of pesticides are the application of the
cheapest, but the toxic type of agrochemicals and
the presence, in residues, of agrochemicals on the
consumable products (Dhananjayan et al. 2020).
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The novelty in the application of plant-beneficial
rhizobacteria for agricultural sustainability

Rhizobacteria are microorganisms that are found
in the rhizosphere of plants, those that form a ben-
eficial association with the plant root are called plant
growth-promoting rhizobacteria (Hashem et al
2019a). These groups of bacteria form an interaction
with the plant to promote their growth and develop-
ment (Lobo et al. 2019). Bacteria are among the biotic
components of the ecological system and their pres-
ence in the rhizosphere serves a beneficial purpose
in promoting plants using a scale sequential bioreac-
tor during the plant's growth (Alka et al. 2020).

More importantly, the plant root can stimulate
the colonisation of beneficial rhizobacteria in the
rhizosphere by releasing ions, enzymes, and some
primary and secondary metabolites that are benefi-
cial and can be absorbed by the bacteria (Olanrewaju
et al. 2017). Additionally, through the beneficial as-
sociation of the rhizobacteria with the plant root,
their population becomes higher in the plant root re-
gion over the bulk soil and serves a beneficial pur-
pose in plant growth promotion and protection
(Pathan et al. 2020). The classification of beneficial
rhizobacteria can be made into two categories which
includes extracellular rhizobacteria that are found
in the rhizosphere or the rhizoplane and intracellular
rhizobacteria which are found inside the plant root
(Gouda et al. 2018).

Beneficial rhizobacteria employ different mecha-
nisms to ensure the nutrient availability and uptake
by the plants to promote their growth, (Khan & Bano
2016), which act as biological control agents in pro-
tecting plants against pathogenic attacks (Jha & Saraf
2015), preventing plants from experiencing biotic
and abiotic stress (Tiwari et al. 2017; Enebe & Babalo-
la 2018) and helping in the bioremediation of heavy
metal soil contamination which is beneficial to im-
prove a plant's health (Vishan et al. 2019).

Furthermore, beneficial-plant rhizobacteria are
considered crucial in ensuring sustainable agricul-
tural practices with a greater worldwide demand
and their eco-friendly approach when compared
to the use of agrochemicals because of their benefi-
cial interaction with the plant and other soil micro-
organisms. In developing countries, changes in the
climatic conditions, an increase in the human pop-
ulation, and industrialisation have contributed to
a negative impact on food security and the plants'
accessibility to nutrient requirements for their
growth (Myers et al. 2017). The application of rhizo-

sphere engineering using beneficial rhizobacteria is
an ecological-friendly technique to meet the global
demand for food and ensuring agricultural sustain-
ability (Ahmadi et al. 2017). Recently, in increasing
the interaction of rhizobacteria with plants, the ap-
plication of a metaorganism approach is now being
employed which involves bringing together different
strains of microorganisms, conducting molecular
investigations of the rhizobacteria strains, selecting
specific host plants and investigating their sole and
microbial consortium in situ (Thijs et al. 2016).

Additionally, the application of plant growth-
promoting rhizobacteria is receiving more aware-
ness because they are environmentally friendly,
easy to handle, and cost-effective (Guo et al. 2020).
The bigger delivery strength of applying plant
growth-promoting rhizobacteria is their biological
control activity against plant pathogens, their biore-
mediation ability in reducing heavy metal contami-
nated soil, promoting plant growth, and improving
food safety and quality (Vejan et al. 2016).

Underlying plant-beneficial rhizobacteria mech-
anisms of action

Beneficial rhizobacteria promote plant growth
through different mechanisms which include phos-
phate solubilisation, nitrogen fixation, the production
of siderophore, the production of phytohormones,
the production of 1-aminocyclopropane-1-carbox-
ylate deaminase (ACC), the induction of systemic
resistance and could also act as biological control
agents (Figure 1).

Phosphate solubilisation

Phosphorus can be regarded as a nutrient that is
important to plants because it helps to improve their
growth. Phosphate solubilising bacteria are ben-
eficial rhizobacteria that solubilise phosphorus into
a form that can be useful to plants and could equally
enhance their growth (Alori et al. 2017b). The ab-
sence of phosphorus in the soil limits plant growth.
The amount of phosphorus in the soil depends large-
ly on the soil properties, such as the pH and type of
soil. Organic phosphorus accounts for 29-65% of the
total soil phosphorous content, but it contributes up
to 90% of the total soil phosphorus in some soil types
(Ghorbani-Nasrabadi et al. 2012). Usually, the phos-
phorus content in the soil must be present in large
amounts for plant use. Nevertheless, a very little frac-
tion of this huge amount is readily made available
to the plants because phosphorus is highly reactive,
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Figure 1. Mechanisms of beneficial rhizobacteria on plant

PGPR - plant growth-promoting rhizobacteria

which makes complexes with other elements that are
not taken up by the plants. Plants can only uptake
monobasic and dibasic forms of phosphorus. To fulfil
the requirements of phosphorus, traditional agricul-
tural practices make use of rock phosphate fertilisers,
which result in the depletion of phosphate reservoirs.
Several bacterial genera such as Bacillus, Rhizobium,
Pseudomonas, Azotobacter, and Azospirillum species
can be classified among phosphate solubilising rhizo-
bacteria (Shah et al. 2018). Likewise, actinomycetes
like Streptomyces alboniger, S. venezuelae, S. aureo-
faciens, and S. lienomycini, have been demonstrated
to produce extracellular phytate-degrading enzymes,
i.e, phytases which correspond to a group of phos-
phomonoesterases that initiate the stepwise break-
down of phytate (Barman et al. 2019). These phytases
have been recorded as acid and alkaline phytases.
The production of acidic compounds by soil micro-
bial flora could also be a process by which phosphate
can be solubilised, and it depends on the metabolic
pathways to utilise different carbon sources. Howev-
er, the mechanism of acidification in phosphate solu-
bilisation by Actinobacteria has rarely been reported
(Jog et al. 2014). Therefore, enzymatic degradation
of phosphate complexes plays a crucial role in mak-
ing the phosphorus and essential compounds avail-
able that are needed for plant growth.

Production of phytohormones

Plant growth is controlled by phytohormones like
auxin and ethylene, which have a positive effect on
plants. Phytohormones are messengers which are
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chemicals that play an important function in im-
proving the plant development, seed germination,
and flowering time in plants (Jiang et al. 2017). More
so, root exudates secreted by plants in the rhizos-
phere help to modulate the microflora around plant
roots and construct a potential environment for the
synthesis of indole-3-acetic acid (IAA) by the benefi-
cial microorganisms in the rhizosphere. One of the
major direct mechanisms of beneficial rhizobacteria
is the production of phytohormones like gibberel-
lic acid and TAA (Garcia-Fraile et al. 2015). Inter-
estingly, the biological synthesis of phytohormones
by beneficial rhizobacteria can be associated with
nutrient availability and the promotion of growth
in plants (Stamenkovi¢ et al. 2018). The major auxin
that is found in the plant is called IAA. The roles per-
formed by IAA in plants are cell division, root elon-
gation, and cell differentiation. Actinobacteria have
been studied to produce phytohormone belonging
to a class of auxins, i.e., IAA which is a common hor-
mone produced by plants (Ranveer et al. 2014). Like-
wise, ethylene, another important phytohormone,
regulates plant growth by promoting root growth,
flowers and fruits, as well as interacts with the micro-
organisms that are present in the plant root (Dubois
et al. 2018). Besides plants, some beneficial bacteria
genera produce IAA, such as Streptomyces (Vuru-
konda et al. 2018), Rhizobium (Tan et al. 2015), Pan-
toea, and Agrobacterium (Paiter et al. 2019). How-
ever, Mishra et al. (2020) reported the production
of IAA in Pseudomonas and Ochrobactrum species.
Similarly, the production of cytokinins was reported
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in Bacillus megaterium, Bacillus subtilis, Bacillus
cereus, and Pseudomonas fluorescens G20 (Hashem
et al. 2019b). The production of IAA is an indication
of the part of the communication between the plants
and the beneficial bacteria that reside in the rhizo-
sphere (Hassan et al. 2019). Their IAA producing
trait makes them a potential candidate in agricul-
tural practices as natural fertilisers in maintaining
agricultural sustainability.

Utilisation of 1-aminocyclopropane-1-carboxy-
late (ACC)

Some rhizobacteria genera like Actinobacteria have
the potential to utilise ACC that acts as a molecule
for the biological synthesis of ethylene (Nascimento
et al. 2018). However, ethylene performs a lot of bio-
logical activities in plants which helps in regulating
the process of ripening fruits and in seed germina-
tion. Ethylene is often called the "ageing hormone"
because of its role in enhancing plant developmen-
tal processes which include ripening, senescence,
and abscission (Schaller 2012). An enzyme known
as ACC-deaminase catalyses the hydrolysis of ACC
into NH, and alpha-ketobutyrate. Some bacteria gen-
era were reported to produce ACC-deaminase, this
includes Streptomyces, Pseudomonas, Bacillus, Azo-
tobacter, and they are considered as beneficial rhizo-
bacterial strains in improving plant health (Glick
2014). A recent research study has revealed an in-
crease in tomato growth (Lycopersicum esculentum)
inoculated with Streptomyces filipinensis and S. atro-
virens due to the production of aminocyclopropane-
1-carboxylate-deaminase (Buzén-Durdn et al. 2020).

Production of siderophore

Siderophore can be referred to as a compound
that is produced by some groups of microorganisms
in the condition where the availability of iron is lim-
ited (Mhlongo et al. 2018). They are small peptide
molecules that consist of side chains and a functional
group where ferric iron can be attached (Goswami et
al. 2016). Iron is an essential element in living things
because it is responsible for the catalysis of numer-
ous enzymatic reactions where it acts as a co-factor.
Furthermore, microorganisms that produce sidero-
phore reduce the amount of iron that is available
to plant pathogens which could eventually reduce
the percentage of pathogen proliferation by plants
and promote plant growth (Etesami & Mahesh-
wari 2018). Earlier, iron was usually present in the
ferrous form (Fe?) in soils when the atmosphere

was oxygen-deficient and it was easily utilised by the
microorganisms. However, with time, as the oxy-
gen-deficiency in the atmosphere has been replaced
by an oxygen-rich environment, iron gets oxidised
into a ferric form (Fe**) which is not readily utilised
by microorganisms. The competition for iron acqui-
sition occurs between plants and phytopathogens
as microbial siderophores have a higher affinity to-
wards iron chelation making the iron unavailable
to plants. High levels of siderophore production
have been reported in Bacillus that were isolated
from the maize rhizosphere (Bjeli¢ et al. 2018).
More importantly, plant growth-promoting rhizo-
bacteria that produce siderophores are becoming
more relevant because they improve the iron nutri-
tion in plants that are grown in iron-deficient soils
(Figueiredo et al. 2016). Siderophores also help
in alleviating heavy metal stress in a plant grown in
a heavy metal polluted soil, which can be detrimen-
tal to plant health (Ahemad & Kibret 2014; Asad et
al. 2019). Several bacteria genera have been reported
to produce siderophores, this includes Streptomyces
(Goudjal et al. 2016), Azospirillum (Banik et al. 2016),
Paenibacillus (Liu et al. 2017), Pseudomonas (Deori et
al. 2018), Azotobacter (Romero-Perdomo et al. 2017).

Production of hydrogen cyanide (HCN)

An important feature of some beneficial rhizobac-
teria is the production of HCN. The action mecha-
nism of HCN is considered to inhibit the terminal
cytochrome c oxidase in the respiratory chain as it
binds to metalloenzymes which confers it as a prop-
erty suppressing phytopathogens (Rosier et al. 2018).
The Rhizobium, Pseudomonas, Alcaligenes, Bacillus,
Aeromonas, and Streptomyces species are hydrogen
cyanide producers. Hydrogen cyanide has also been
reported to contribute to the mineral mobilisation
and phosphate release which results in an indirect
increase in the nutrient availability to both Actino-
bacteria and their host plants (Rijavec & Lapanje
2016). Based on the ability of HCN to prevent plant
pathogens and to enhance nutrient availability, HCN
producing rhizobacteria can be used as a biocontrol
agent and biofertiliser for plant growth promotion
and protection.

Nitrogen fixation

Approximately 80% of the nitrogen in the atmos-
phere cannot be made available to plants because
it occurs as an inert gas (Patel & Minocheherhomji
2018). Besides, nitrogen is an important nutrient
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that is responsible for plant growth. However, for
atmospheric nitrogen to be used directly by plants,
it must be converted to ammonia and this process is
called nitrogen fixation (Byrne et al. 2019). The pro-
cess of conversion of atmospheric nitrogen to am-
monia is performed by beneficial microorganisms
that can fix nitrogen and the action is aided by an
enzyme called nitrogenase (Kumar et al. 2019).

The association built by nitrogen-fixing microor-
ganisms with the host plant could be symbiotic or
non-symbiotic. In a soil that is nitrogen deficient,
a large amount of nitrogenous based fertiliser needs
to be applied to the soil so that the amount of nitro-
gen required by plants to improve their growth is
available to the plant. Some rhizobacterial species
that have the ability to fix nitrogen are Azospirillum,
Acinetobacter, Bacillus, Burkholderia, Enterobacter,
Erwinia, Flavobacterium, Pseudomonas, Rhizobium,
Bradyrhizobium, Azorhizobium and Serratia. They
colonise plant roots and fix the atmospheric nitrogen
which improves the plant growth (Babalola 2010).

Production of lytic enzymes

The cell wall of microorganisms is responsible
for maintaining the integrity of cells under all kinds
of environments, i.e., isotonic, hypotonic, and hyper-
tonic. The cell wall of different organisms is composed
of various kinds of complex polymeric substances.
For instance, the composition of the fungal cell wall
is made up from chitin, while the bacterial cell wall is
made up from peptidoglycan, i.e., a polysaccharide
chain cross-linked with unusual peptides (Arroyo et
al. 2016; Walter & Mayer 2019). The cell wall of path-
ogenic bacteria, fungi, and protozoa are hydrolysed
by lytic enzymes, such as protease, acylases, and lac-
tonases that are produced by beneficial rhizobacte-
ria, thereby preventing pathogenic microorganisms
from causing diseases in plants (Felestrino et al.
2018). Recently, Streptomyces spp. has been reported
to produce chitinases, Streptomyces RC1071 isolated
from cerrado soils was tested against a phytopatho-
genic fungus and was reported to have an antifungal
activity (Shafi & Khattab 2020). Similarly, Actinomy-
cetes have also been reported to produce proteases,
lipases, chitinases, and cellulases (El-Sherbiny et al.
2017). The production of lytic enzymes by Actino-
bacteria grants them a biocontrol potential and helps
improve plant growth characteristics (Wani & Go-
palakrishnan 2019).

Several genera of bacteria have proved their im-
portance as antagonistic agents against plant patho-
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gens, these include Bacillus, Azospirillum, Serratia,
Pseudomonas, Pythium, and Coniothyrium (Hei-
darzadeh & Baghaee-Ravari 2015). The applica-
tion of these microorganisms over time has proved
successful in colonising the plant rhizosphere and
in promoting their growth (Becker et al. 2018).

Production of antibiotics

The production of secondary metabolites has been
studied in beneficial rhizobacteria, i.e., by-prod-
ucts of metabolism that are not generally essen-
tial for their growth. These metabolites are known
as antibiotics (Gislason et al. 2020). Antibiotic pro-
duction by beneficial soil bacteria exhibits antitu-
mor, antifungal, immunosuppressive, insecticidal,
herbicidal and many clinically commercially impor-
tant activities. Among the bacteria, Streptomyces
spp. has been reported to produce a wide variety
of antibiotics belonging to class p-lactam (Ogawara
2016). However, antibiotic production by benefi-
cial soil bacteria differs in their chemical structure
and effects on the different plant pathogens. In the
rhizosphere, antibiotics produced by soil-dwelling
bacteria inhibit plant pathogens fungistatics by tar-
geting either the essential molecules or biosynthetic
pathways and its production depends upon several
factors like: the temperature, aeration, and presence
of competing microorganisms (Shaikh & Sayyed
2015; Omran & Kadhem 2016). Bacillus subtilis
has been reported to produce antibiotics known
as zwittermicin and mycosubtilin that are effective
against some fungal pathogens (Saraf et al. 2014).
Recently, the deteriorative effect of Rhizoctonia
solani on plants has been inhibited by pyrrolnitrin
antibiotics produced by P, fluorescens BL915 (Tariq
et al. 2017). Additionally, Pseudomonas chlorora-
phis that synthesised phenazine with an antagonis-
tic activity have been reported by Chen et al. (2015)
to inhibit the growth of pathogenic fungi Fusarium
oxysporum, Rhizoctonia solani, and Pythium ulti-
mum. Therefore, beneficial bacteria that live in the
soil produce different types of antibiotics depend-
ing upon the environmental conditions to protect
the plant against pathogen attacks which could be
detrimental to the plant growth and productivity.

Multitasking role of beneficial rhizobacteria
in agriculture

The role of rhizobacteria as biofertilisers in crop
production. Microorganisms that are living in the soil
are crucial because they decompose organic matter
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and also ensure that the nutrients needed for plant
development are made available to the plants (Baha-
dur et al. 2016). The presence of beneficial bacterial
in the soil certainly increases the nutrients that are
present in the soil and improves the plant growth and
yield which results in sustainable agriculture. A bi-
ofertiliser serves as an inexpensive source of nutri-
ents to the plant so that the quality of the crop yield
can be improved (Shabbir et al. 2019). Soil microor-
ganisms help in the fixation of nitrogen to the plants
by converting atmospheric nitrogen to a form that is
assimilated by the plants and will result in improving
their growth. Rhizobium, Bradyrhizobium, and Azo-
rhizobium fix nitrogen to the legume through a sym-
biotic association which results in the formation
of nodules in the plants (Igiehon & Babalola 2018).
Rhizobium inoculation helps to enhance the root
nodulation, improve the plant growth, and produce
an increase in grain yield under cultivated conditions
when compared to an uninoculated plant. The mi-

croorganisms used in the production of biofertilisers
increase the plant yield through the fixation of at-
mospheric nitrogen, phosphate solubilisation, and
phosphate mobilisation. The application of beneficial
rhizobacteria fertilisers by farmers is increasing be-
cause they improve the soil quality, are cost-effective
and pose no harm to humans and the environment,
and result in limiting the application of chemical fer-
tilisers (Singh et al. 2019).

More so, a lot of success has been recorded in the
application of beneficial rhizobacteria as biofertilis-
ers in promoting plant growth (Table 1). Recently,
the research conducted by Bharti and Barnawal
(2019) on the inoculation of wheat plants with Di-
etzia natronolimnaea was reported to increase
the plant biomass and enhance its tolerance to sa-
linity. In addition to this, Kuan et al. (2016) were
able to screen some selected beneficial rhizobac-
teria like Klebsiella pneumoniae, Bacillus pumilus
and the Acinetobacter species in improving maize

Table 1. Summary of the beneficial rhizobacteria strains used as a biofertiliser with their effect on the crop enhancement

Plant growth-promoting

. . . Plants
rhizobacteria strain

Effect on crops

References
enhancement

Pseudomonas rice
granadensis T6 (Oryza sativa)

Rhizobium leguminosarum faba beans
sv viciae NGB-FR 126 (Vicia faba)
okra

Alcaligenes faecalis (Abelmoschus esculentus)

Wheat

Azospirillum brasilense .. ,
P (Triticum aestivum)

Bradyrhizobium
yuanmingenes VIBA-2

cowpea
(Vigna unguiculata)

common beans
(Phaseolus vulgaris)

Rhizobium leguminosarum
sv phaseoli HB-429

broad beans

plant growth promotion

enhances the root length, weight and
promote growth by 81%

responsible for the production of IAA
in okra (Abelmoschus esculentus)

responsible for an increase in height.

promote growth by 38% when
compared with uninoculated plant

plant growth promotion

(Shen et al. 2019)

(Youseif et al. 2017)

(Perez-Harguindeguy
et al. 2016)

(Karimi et al. 2018b)

(Gbémez Padilla et al. 2016)

(Samago et al. 2018)

Pseudomonas aeruginosa (Vicia faba) promote the remediation ability of plant (Babalola 2010)
Rhizobiwm spp. mung beans promote‘ the .grov‘vth and improve (Ravikumar 2012)
(Vigna mungo) weight in Vigna mungo
Azospirillum brasilense maize . .
1 h 1 1. 201
Ab-V5 and Ab-V6 (Zea mays) plant growth promotion (Galindo et al. 2019)
soybeans enhance nodulation in leguminous crop

Bradyrhizobium spp. (Glycine max)
tomato

Bacillus tequilensis PBE1 (Solanum lycopersicum)

Pseudomonas, Bacillus turmeric

as their plant part grows

plant growth promotion

plant growth promotion

(Igiehon et al. 2019)

(Bhattacharya et al. 2019)

(Kumar et al. 2015)

IAA - indole-3- acetic acid
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growth. In the research, it was reported that the
plant growth-promoting rhizobacteria improved
the maize ear yield when compared with the uni-
noculated plants. The positive effect of beneficial
rhizobacteria Pseudomonas and Agrobacterium
isolated from the root of Arthrocnemum indicum
possessed plant growth-promoting activity which
includes phosphate solubilisation, the production
of indole-3-acetic acid, the ability to reduce acety-
lene and showed a positive reaction to ACC deami-
nase activity was recorded when the peanut plant
was inoculated. They colonised the peanut roots
and were capable of increasing the peanut growth
over the uninoculated plants (Sharma et al. 2016).
Similarly, Panwar et al. (2016) have also evaluated
the effect of Pantoea and Enterococcus with plant
growth-promoting traits on mung beans, the two
rhizobacteria showed a better performance in in-
creasing the plant growth over uninoculated mung
bean plants under a salt stress condition. Likewise,
the inoculation of the plant growth-promoting
strain of Bacillus sp RZ2MS9 and Burkholderia
ambifaria RZ2MS16 was reported by Batista et al.
(2018) in promoting corn and soybean growth under
greenhouse conditions when compared with an uni-
noculated control for both strains and crops. Chuk-
wuneme et al. (2020) reported the plant growth-
promoting potential of Arthrobacter arilaitensis and
Streptomyces pseudovanezuelae in promoting maize
growth under water-stressed conditions. In the re-
search, the maize plants were protected against
the deleterious effect of drought and a significant in-
crease in the physiological parameters was recorded
over the control plant.

Role of plant beneficial rhizobacteria as biologi-
cal control agents against phytopathogens. The ap-
plication of beneficial rhizobacteria as bioinoculants
in controlling pests and pathogenic microorganisms
that affect plants has been confirmed to be the best
alternative to the use of agrochemicals because it is
cheap, environmentally friendly and acts as a sus-
tainable agricultural management approach in pro-
tecting plants. This makes plant growth-promoting
rhizobacteria an acceptable biological tool for con-
trolling plant diseases and ensuring good agricul-
tural practices (Farha et al. 2018). There are a lot
of biocontrol agents that are present in the market,
but it is crucial to understand their interaction with
plants, pathogens, and the environment before their
use because the purpose of the application may not
be achieved if the plant is already under attack from
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diseases (Liang et al. 2015). A biocontrol can be de-
fined as an interrelationship that occurs in plants
through the action of some beneficial microorgan-
isms, aimed at reducing the negative effects of path-
ogenic microorganisms that harm the plants, there-
by enhancing the plant growth (Farha et al. 2018).
Some plant growth-promoting rhizobacteria have
been reported for their potential to reduce diseases
caused by pathogenic fungi and bacteria in plants
which makes them the best option to be used as bio-
control agents (Table 2) (Rani et al. 2018). Adopting
the use of beneficial rhizobacteria as a biocontrol
agent in suppressing diseases in plants is also a low
cost and safe method of crop management. Consid-
ering the toxicological aspect of chemical pesticides,
it can be confirmed that most biopesticides are less
toxic and more environmentally friendly than chemi-
cal pesticides. More importantly, the need to use
beneficial rhizobacteria as an alternative that have
not been chemically synthesised, especially biope-
sticides, are increasing globally because they pose
no harm to the ecological system (Gross et al. 2014;
Czaja et al. 2015). The action mechanisms that al-
low beneficial rhizobacteria to be used as biocontrol
agents are the production of lytic enzymes, the com-
petition for nutrient availability and the production
of secondary metabolites/antibiotics that suppress
the proliferation of plant pathogens (Alori & Babalola
2018). The application of beneficial rhizobacteria as
biocontrol agents modulate hormones, like ethylene
and auxin, in plants and reduce the rate of damage
to the plants by pathogenic microorganisms.
Interestingly, the control of fungal infections and
herbicidal activities is part of the important role
played by plant growth-promoting rhizobacteria
bioinoculants on plants, for example, Aspergillus fla-
vus, in stored and field products, was reported to be
controlled by Bacillus subtilis. Rhizobium had also
served as a biocontrol agent against Pythium diseas-
es (Alori & Babalola 2018). Pseudomonas was also
used as a biocontrol agent for Fusarium wilt (Cepeda
2012). The biocontrol ability of plant growth-pro-
moting rhizobacteria was conducted by Kumar et al.
(2016), the report from the findings revealed that the
inoculation of Paenibacillus lentimorbus with Nico-
tiana tabacum improved the plant growth and acted
as a biocontrol agent against the mosaic virus in cu-
cumbers. Beneficial rhizobacteria are seen as an al-
ternative to the use of agrochemicals in suppressing
soil-borne pathogens and are responsible for the mo-
bilisation of nutrients in the soil (Meena et al. 2017).
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Table 2. Some beneficial rhizobacteria that have been tested as microbial inoculants in controlling plant diseases

References

Effect on plants

Mechanisms involved

Diseases

Diseases causative
agent

Host plant

Microbial isolates

(Gémez-Lama Cabands

reduce the severity of the
disease caused by the pathogen

improve plant growth and

Verticillium

Verticillium

olive trees
(Olea europaea)

Pseudomonas
fluorescens

et al. 2014)

induce systemic resistance

wilt

dahlia

reduce the severity of the
disease caused by pathogens

interference of signal

Verticillium

Verticillium

oilseed rape
(Verticillium longisporum)

Serratia
plymuthica

(Kaouthar et al. 2016)

(Quorum sensing)

wilt

dahlia

suppress the effect of
pathogen attack on plant

induction of systemic

tomato
(Solanum lycopersicum)

Bacillus

(Tabassum et al. 2017)

Fusarium spp.

resistance

subtilis S499

production of defensive enzymes

activation of induced

(Farha et al. 2018)

for treatment of the plant tissue

systemic resistance

red rot

Colletotrichum

sugar cane
(Saccharum officinarum)

Pseudomonas
fluorescens

falcatum

Pseudomonas

induced systemic

Ceratocystis
fagacearum

(Zheng et al. 2012)

reduce crown loss

oak wilt

oaks (Quercus spp)

denitrificans,

resistance defence

Pseudomonas putida

limit severity of diseases
by causative organisms

induced systemic

chickpea
(Cicer arietinum)

Pseudomonas
fluorescens PNA1

(Babalola & Glick 2012)

Fusarium wilt

Fusarium spp.

resistance defence

The application of Bacillus cereus TSH77 that are
known to contain fengycin and surfactin through
investigation of an acid cell-free culture filtrate
has been reported by Chauhan et al. (2016) to sup-
press the proliferation of the Fusarium solani plant
pathogen that caused rot disease in potatoes. Like-
wise, Bacillus methylotrophicus was reported for its
antifungal activity against Fusarium oxysporum and
Rhizoctonia solani (Devi et al. 2018). In the quest
for more food production globally, the research con-
ducted by Fu et al. (2017) revealed that the inocula-
tion of a newly established banana plantation with
Bacillus amyloliquefaciens NJN-6 suppressed Fusar-
ium wilt. Likewise, the biocontrol activity of Rhizo-
bium isolated from the rhizosphere of different
plants was reported to suppress the growth of the
plant pathogens Rhizoctonia solani and Sclerotium
rolfsii under in vitro condition (Manasa et al. 2017).
Similarly, the application of Bacillus subtilis and
Bacillus amyloliquefaciens in suppressing the path-
ogenic effect of Phytophthora sojae was reported
by Liu et al. (2019) to inhibit the Phytophthora sojae
hyphae growth that causes soybean blight. The plant
growth-promoting trait and biocontrol potential
of the beneficial rhizobacteria strain Acinetobacter
spp. PKA and Ochrobactrum intermedium TRD14
was conducted in a greenhouse against a root rot
pathogen in the sugarcane Colletotrichum falcatum.
The bacteria were reported to suppress pathogen
growth and promote the plant growth parameters
in the sugarcane (Patel et al. 2019). Streptomyces
cochorusii have been reported by Yang et al. (2017)
to be effective against Rhizoctonia solani that causes
sheath blight diseases in rice. Rice sheath blight is
among the worst rice diseases globally because it
causes yield losses in rice of more than 50% approxi-
mately (Yang et al. 2017).

Significance of plant-beneficial rhizobacteria on
heavy metal bioremediation

Bioremediation is a process that involves the use
of beneficial rhizobacteria as inoculants to resolve
the negative effects of industrialisation on the envi-
ronment and plant health as a result of metal spillage
(Ojuederie & Babalola 2017). Notably, agricultural
practices are negatively affected by the presence
of heavy metals because it results in soil contamina-
tion which makes it unfit for agricultural purposes
and could be harmful for the plant development
(Ayangbenro & Babalola 2017). Though metals
are important to plants, their presence in excess
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amounts becomes hazardous to the plant's health
(Asati et al. 2016). Therefore, there is a need for met-
als to remain in a stable state for them to be useful to
plants, but if they are available in an unstable state,
they become detrimental to plant health by disrupt-
ing the biological processes that occur in the plant
(Masood & Bano 2016). More so, metals can attach
to some enzymes or molecules which cause stress
to the plant and they can also attack protein forma-
tion, thereby becoming toxic to plants (Wang et al.
2016). The application of microorganisms like plant
beneficial rhizobacteria in bioremediating metal
polluted environments is an approach that is non-
hazardous to the ecological system when compared
with agrochemicals that pose harm to the biotic and
abiotic components (Dixit et al. 2015). Similarly,
rhizobacteria with a plant growth-promoting ability
through the production of siderophores has helped
in plant development by removing heavy metals
from the polluted soil and providing the nutrients
needed for plant survival in a soil polluted by heavy
metals (Kumar et al. 2020). The application of plant
growth-promoting rhizobacteria in the bioremedia-

https://doi.org/10.17221/130/2020-PPS

tion of a soil polluted by heavy metals is attached
to features such as the ubiquity, size, and ability
to grow in both controlled and stressed conditions
(Srivastava 2015). Several genera of plant growth-
promoting rhizobacteria have been reported in the
bioremediation of heavy metals such as the Bacillus,
Pseudomonas, and Micrococcus species (Table 3).
Some of the processes through which the microor-
ganisms remediate their environment are rhizofil-
tration, biosorption, bioaccumulation, and biomin-
eralisation (Wang et al. 2016).

The bioremediation ability of Bacillus cereus to re-
move mercury from a synthetic effluent was conduct-
ed in a laboratory experiment designed by Sinha et
al. (2012) using a scale sequential bioreactor. In the
research, it was reported that Bacillus cereus was able
to remove approximately 104 mg/g of mercury
on the third day. The report of Micrococcus luteus
in removing a large amount of lead from a synthet-
ic medium with the removal capacity of 1964 mg/g
was reported by Puyen et al. (2012). Similarly, the ap-
plication of Desulfovibrio desulfuricans in the removal
of nickel, copper, and chromium from contaminated

Table 3. Summary of potential plant growth-promoting rhizobacteria strains employed in heavy metal bioremediation

Plant growth-promoting

> . Tested plants
bacteria strains

Plant growth-promoting trait

Heavy metal References

Rhizobi
rzoomm Vicia faba IAA Pb,Cd, Cu  (Saadani et al. 2016)

leguminosarum prl
Pseudomonas » ) production of siderophore,

T , Cu, H 1. 201
aeruginosa CPSB1 riticum aestivim HCN phosphate solubilization Cr, Cu, Mn (Hassan et al. 2017)
Bu'cillus licheniformis, Vitis vinifera sider‘ophore production, I?i.trogen As (Pinter et al. 2017)
Micrococcus luteus fixation, phosphate solubilization

ducti f ACC deami
Pseudomonas spp. Centaurea cyanus produc 101? ° caminase Pb (Karimi et al. 2018a)
siderophore

Bacillus megaterium . . production of siderophore
H3 Bactris campestris and IAA Cd, Pb (Wang et al. 2018)
Enterobacter production of IAA

Leptochl, C Ashraf et al. 2018
spp. HU38 eptochloa fusca and siderophore 8 (Ashrafeta )
Acinetobacter iwolffii . . production of siderophore

Vi diat Al D d Sarkar 2018
RJB-2 igna radiata phosphate solubilization and IAA s (Das and Sarkar )
Pseud hosphate solubilizati
seudomonas Spartina densiflora phosp ? € Sotubt IZ? ton Zn, As, Pb  (Paredes-Paliz et al. 2018)

agglomeran RSO6 and nitrogen fixation
;/grlzovomx paradoxus Pisum sativum production of ACC deaminase Cd (Kumar et al. 2020)
Pseudomonas spp. . . . .

Ricinus communis production of siderophore Zn (Ma et al. 2015)

A3R3

IAA - indole-3- acetic acid; ACC — aminocyclopropane-1-carboxylate; HCN — hydrogen cyanide
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seawater have been reported by Kim et al. (2015) with
the capacity of removal ranging from 90-100 mg/g
after seven days of the application.

Application of plant-beneficial rhizobacteria
as biostimulant for plants

Biostimulants are materials of biological ori-
gin that contain microorganisms that can enhance
the natural soil and, when applied in a small quan-
tity, they promote plant growth (Yakhin et al. 2017).
Azospirillum, which is the most popular genus
of rhizobacteria, has been known to improve plant
development in the plant's roots, where it can obtain
a large carbon source and exudates that could serve
as a nutrient for the beneficial rhizobacteria that live
around the root region (Ramos et al. 2011). With
this association of beneficial microbes with the plant
root, the microorganisms will be able to produce
some enzymes and plant hormones that will serve
as protection for the plant against plant pathogens
(Lawal and Babalola 2014). In the plant's roots and
in the soil, millions of plant beneficial rhizobac-
teria are found that live symbiotically with them.
Different strains of Azospirillum like A. brasilense
and A. lipoferum have been used as a biostimulant
in crops to improve their yield (Fei et al. 2019).

The benefits obtained by plants through the use
of Azospirillum as a biostimulant are the nitrogen
fixation and the production of indole-3-acetic acid,
which enhances the root hair growth in the plants
for the proper uptake of minerals (Lawal & Babalola
2014). Similarly, the stimulatory activity of plant
growth-promoting rhizobacteria in promoting
the plant have been reported in Bacillus subtilis
KB105, Peanibacillus graminis FL400, Bacillus ami-
loliquefaciens SQR9 and Bacillus pumilus OS15,
which makes the bacteria strains a good source
of microbial inoculants in ensuring sustainable ag-
riculture (Rouphael & Colla 2020).

CONCLUSION

The rate at which we use agrochemical products
that caused ecological imbalance has encouraged
industries responsible for the production. There-
fore, there is a need to look for an alternative means
of increasing food production, enhancing the plant
health, reducing pathogen infections, and increas-
ing the soil fertility, which will pose no harm to hu-
mans and the environment. The knowledge of the
multifaceted role of plant-beneficial rhizobacteria

as bioinoculants can fill the gap in the food produc-
tion, bioremediation, and pathogen control to meet
the food demand by the increased global population.
Also, it is important to appreciate the usefulness
of beneficial rhizobacteria with their plant-growth-
promoting and biocontrol potential as a modern
way of improving crop productivity, food quality,
and ensuring sustainable agriculture.

Conclusively, there is a need for more research
to unveil the potential beneficial rhizobacteria
as bioinoculants in increasing the plant develop-
ment, plant defence and productivity toward ensur-
ing sustainable agriculture.
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