Original Paper Plant Protection Science, 58, 2022 (4): 326-337

https://doi.org/10.17221/46/2022-PPS

Biological impact, oxidative stress and adipokinetic
hormone activities of Agrotis ipsilon in response
to bioinsecticides

MOoATAZ A.M. MoUSTAFA'* WAEL H. ELMENOFY?, ENGY A. OSMAN?,
NOURHAN A. EL-SAID’, MoNa AwAD!

!Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University,
Giza, Egypt

2Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt

3Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt

*Corresponding author: moataz.moustafa79@gmail.com

Citation: Moustafa M.A.M., Elmenofy W.H., Osman E.A., ElI-Said N.A., Awad M. (2022): Biological impact, oxidative stress
and adipokinetic hormone activities of Agrotis ipsilon in response to bioinsecticides. Plant Protect. Sci., 58: 326—337.

Abstract: The use of biological control products enhances the reduction of harmful pressures on the environment
caused by the use of conventional pesticides. Therefore, this study aims to evaluate the toxicity of eight bioinsecticides
on the black cutworm Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) to understand the relationships between
insecticide exposure and insect response at the individual and population levels. The bioassay results showed that ema-
mectin benzoate had high toxicity against A. ipsilon second instar larvae with an LCs of 0.007 (mg/L). Sublethal con-
centration (LCs) of emamectin benzoate, spinosyn group and Bacillus thuringiensis formulation (Dipel 2X) had signi-
ficantly prolonged pupal period. In addition, emamectin benzoate significantly decreased the number of eggs laid per
female (135.3 + 6.919) compared with the control treatment. Thus, the formulation of chlorfenapyr showed a 1.26-fold
reduction in hatching rate. Meanwhile, the activities of oxidative stress enzymes (catalase, superoxide dismutase, lipid
peroxidase, and glutathione reductase) were significantly affected due to exposure to sublethal concentration. Changes
in adipokinetic hormone (AKH) transcriptional regulation were detected via SQ-PCR via using cDNA synthesized from
mRNA isolated from treated A. ipsilon larvae. The results showed a higher transcription rate of AKH in spinotram-
-treated larvae with a 1.42-fold increase over untreated larvae. Our results provide useful information for integrated
pest management programs for A. ipsilon by using bioinsecticides.
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Black cutworm, Agrotis ipsilon Hufnagel (Lepi-
doptera: Noctuidae), poses a serious threat to many
crops (Williamson & Potter 1997). A. ipsilon larvae
cause crop deficiency in unprotected crop fields
and cause huge economic losses (Yu et al. 2012; Du
et al. 2013). Therefore, chemical insecticides have
been used as the most common control strategy.

However, the regular use of these insecticides could
cause a resistance problem; A. ipsilon has devel-
oped resistance to organophosphates, carbamates,
and pyrethroids because of the highly frequent use
of these conventional chemical insecticides at high
concentrations and without active substance rota-
tion (Yu et al. 2012; Xu et al. 2016). Therefore, dur-
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ing the past three decades (from the 1990s), a new
range of insecticides has been developed to re-
duce the risk of resistance development (Horowitz
& Ishaaya 2004; Sparks et al. 2019). A new group
of insecticides, bioinsecticides, including microbial
and fermentation products, could represent prom-
ising alternative compounds synergy with other
biological control methods (Urbaneja et al. 2012).
Bioinsecticides based on Bacillus thuringiensis (Bt)
are used worldwide for pest control, with sales ac-
counting for over 90% of all bioinsecticide (Sayed
& Behle 2017). Bt harbors several kinds of insec-
ticidal proteins, such as crystalline (Cry) proteins
(Moustafa et al. 2013) used against several insect
pests. This Cry toxin binds to specific receptors
in the midgut and derange the uptake of nutrients
or cause perforation of the gut wall leading to gen-
eral sepsis and death (Bravo et al. 2004).

Spinosyn group, including spinosad and spineto-
ram are fermented metabolite products of the soil
actinomycete Saccharopolyspora spinosa (Thomp-
son et al. 1997). Spinosad is a mixture of spino-
syn A and D, whereas spinetoram, the second
generation of spinosyn group, is composed of spi-
nosyn J and L (Bacci et al. 2016). Spinosyn group
has strong insecticidal activity against a wide spec-
trum of insect pests (Bret et al. 1997; Sparks et al.
1998). It affects y-aminobutyric acid (GABA) or
glutamate receptors (Duce et al. 1995) as a primary
site of action and persistent activation of nicotinic
acetylcholine receptors as a secondary site on oth-
er subunits different from all other nicotinic ago-
nists (Salgado et al. 1997). In addition, emamectin
benzoate is composed of two macrocyclic lactones
metabolites, avermectin B;, and B;;, (Mushtaq et al.
1997), produced through the fermentation process
of the soil microorganism, Streptomyces avermilitis
(Crouch et al. 1997). Furthermore, emamectin ben-
zoate has an insecticidal activity against lepidop-
teran insect pests, including Helicoverpa zea (Bod-
die), Spodoptera littoralis (Boisd.) and Mamestra
brassicae (Linnaeus) (Lopez et al. 2010; El-Sheikh
et al. 2015; Moustafa et al. 2016). It affects the glu-
tamate- or GABA-gated chloride channels, caus-
ing the hyperpolarization action of a neuronal cell
(Jansson et al. 1997; Grafton-Cardwell et al. 2005).
However, chlorfenapyr is specifically a pro-insec-
ticide, activated after oxidative removal of the N-
ethoxymethyl group by mixed-function oxidases. It
was derived from a natural product dioxapyrrolo-
mycin, isolated from Streptomyces fumanus actino-
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mycete (Ahmed & Mehmood 2015). Chlorfenapyr
works by disrupting the mitochondrial uncoupling
(Black et al. 1994), effective against lepidopteran
pest, thrips and mites.

Determining the sublethal effects of bioinsec-
ticides is important (Vojoudi et al. 2017) to pro-
long the long-term efficiency of these insecticides
in pest management. Therefore, the sublethal effect
of bioinsecticides has been recorded in several in-
sect pests, including A. ipsilon (He et al. 2019), Plu-
tella xylostella (Linnaeus) (Han et al. 2012; Su & Xia
2020), M. brassicae (Moustafa et al. 2016), S. litto-
ralis (Moustafa et al. 2021a), Helicoverpa armigera
(Hibner) (Vojoudi et al. 2017) and Tuta absoluta
(Meyrick) (Kandil et al. 2020a). Thus, insecticides
with different chemical classes could induce the re-
active oxygen species (ROS) (Abd El-Aziz & Fahmy
2015), which are generated from the oxidative me-
tabolism of cells (Bagchi et al. 1995). Functionally,
oxidative stress (OS) occurs because of the imbal-
ance between higher levels of ROS and the cellular
antioxidant defense (Ilhan et al. 2005). In insects,
the antioxidant enzyme system, which comprises
enzymes such as catalase (CAT) and superox-
ide dismutase (SOD) or non-enzymatic antioxi-
dants such as glutathione reductase (GR), can stop
the deleterious effect of ROS (Felton 1995; Rindler
et al. 2013). Activation of the antioxidant mecha-
nism is a complex process under hormonal control
(Lu et al. 1991) of adipokinetic hormones (AKHs)
(Kodrik et al. 2007; Vecera et al. 2007). AKH is
a synthesized neuropeptide, released from the cor-
pora cardiaca, and recognized as the main antioxi-
dant stress hormone in insects (Kodrik et al. 2015).
A main function of AKHs is to control the metabo-
lism of insects (Géde et al. 1997). They act as typi-
cal stress hormones through catabolic stimulation
(mobilize lipids, carbohydrates, and certain amino
acids), providing more energy and inhibiting struc-
tural reactions. This increases the concentration
of energy substrates in the hemolymph (lipids, car-
bohydrates, proline), inhibits synthetic reactions
(lipid, protein, RNA), and control of many support-
ive actions, including motility stimulation (Kodrik
& Socha 2005).

In this context, the current work aims to assess
the sublethal effects of certain bioinsecticides on
the development and reproductive activity param-
eters (fecundity and fertility) of A. ipsilon. In addi-
tion, we investigate the effect of these bioinsecti-
cides on changes in the activity of oxidative stress
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enzymes and AKH to show their role in resolving
critical situations disturbing the homeostasis on
A. ipsilon.

MATERIAL AND METHODS

Agrotis ipsilon culture. We reared A. ipsilon in the
laboratory according to Moustafa et al. (2021b).
The culture was maintained in a rearing room
at 27 + 2 °C, 55 + 5% relative humidity under a re-
versed 16L: 8D (light: dark) regime. The larvae from
the 3'¢ instar (He et al. 2019) were reared in small
plastic cups (7.0 cm in diameter, 3.5 cm in height)
individually with a castor bean leaf to prevent can-
nibalism. The emerged moths were transferred
to glass jars (5 L), with 10% sugar solution as source
of feeding (Kandil et al. 2020a) and a piece of black
fabric mesh netting to lay eggs.

Tested insecticides. Common name, trade name,
and mode of action of tested insecticides are de-
tailed in Table 1.

Bioassay. Toxicity of the above bioinsecticides
was assessed on the 2" larval instar of A. ipsi-
lon using the leaf dipping technique (Moustafa
et al. 2021b). Five different concentrations of each
bioinsecticide formulation were used (Bt formula-
tions: from 1 600 to 200 mg/L, spinosyns formu-
lations: from 5 to 0.012 5 mg/L, proclaim formula-
tion: from 1.25 to 0.000 125 mg/L and Challenger
formulation: from 50 to 0.125 mg/L). First, castor
bean leaves were dipped in each concentration for
20 s, while untreated leaves were dipped in wa-
ter for the control, then both treatments were air-

Table 1. Tested bioinsecticides and their mode of action
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dried for 30 minutes. Next, both treated and un-
treated leaves were transferred into a glass container
(0.25 L) and ten larvae with five replications were
added and left to feed for 24 h. After four days (96 h)
post-treatment, the mortality percentage was taken
to calculate the lethal and sub-lethal concentrations
of each formulation on A. ipsilon larvae. The bioas-
say experiments were repeated twice.

Sublethal effects of bioinsecticides on develop-
ment of A. ipsilon. We exposed the 2™ larval instar
of A. ipsilon to the sublethal concentration of LCs,
for the tested bioinsecticides as described above.
Three replicates, with 50 larvae each, were per-
formed. Seven days after the exposure (Awad et al.
2022), surviving larvae were transferred individu-
ally to clean plastic cups to record larval duration,
mortality % and pupation %. Each pupa was sexed,
weighed and maintained individually with moist
cotton to record the total pupal duration and emer-
gence %. After emergence, five females and seven
males in three replicates were transferred to clean
glass jars (5 L) as described by Moustafa et al.
(2016). Egg clusters were collected daily and trans-
ferred to a clean jar with a piece of wet cotton un-
til hatching to calculate the fecundity (total num-
ber of eggs laid/female) and fertility (total number
of larvae/egg cluster).

Enzyme activity determination

Sample preparation. The second larval instar
of A. ipsilon was fed on castor bean leaves dipped
in LC;y, equivalent concentration for each formula-
tion as described above. The treatment was repeated
three times. Approximately 100 mg of the surviving

Bioinsecticides Trade names (producer)

Formulation (a.i. %) Mode of action*

Diple 2x (Valent Biosciences, USA) 6.4% WP
Bacillus thurineiensis Diple DF (Valent Biosciences, USA) 6.4% WP Microbial disruptors of insect midgut
© Protecto (Institute of Plant Protection, Egypt) 9.4% WP membranes

Biotect (Organic Biotechnology, Egypt) 9.4% WP

Spinosyns spinosad Tracer (Wadi El-Nile, Egypt) 24% SC Nicotinic acetylcholine receptor
spinetoram Radiant (Shoura, Egypt) 12% SC allosteric modulators — site I
Emamectin benzoate Proclaim (Syngenta, Switzerland) 5% SG Glutamate-ga’Fed chloride channel
allosteric modulators

Chlorfenapyr Challenger (BASE, USA) 24% SC Uncouplers of oxidative phosphorylation

via disruption of the proton gradient

SC — suspension concentration; SG — water soluble granules; WP — wettable powder

*Insecticide Resistance Action Committee (IRAC 2020)
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A. ipsilon larvae were transferred to a clean Eppen-
dorf tube and kept at —20 °C prior to the biochemical
assays. Untreated larvae were subjected to the same
procedure. The frozen A. ipsilon larvae were homog-
enized in ice-cold potassium phosphate buffer (50
mM, pH 7.0) in a ratio of 30 pL buffer per 1 mg body
weight, and centrifuged at 7 000 g for 15 min at 4 °C,
and the supernatant was placed into a new tube and
kept on ice for the next step.

Enzyme assay. SOD activity was evaluated ac-
cording to the method described by Nishikimi
et al. (1972) using a Biodiagnostic Kit (Biodiag-
nostics Company, Egypt). CAT activity was meas-
ured using a Biodiagnostic Kit according to Aebi
(1984) at an absorption rate of 510 nm. Lipid Per-
oxidase Assay Kit (Biodiagnostics Company, Egypt)
was used to monitor malondialdehyde (MDA) for-
mation at 534 nm (Ohkawa et al. 1979). Glutathione
reductase activity was measured by a Biodiagnos-
tic kit according to Goldberg & Spooner (1983).
The estimation of Glutathione reductase was based
on the reduction of glutathione (GSSG) in the pres-
ence of NADPH, which is oxidized to NADPH*
at 340 nm.

Determination of gene expression of AKH

Dissection and tissue homogenization. The gut tis-
sue of treated A. ipsilon larvae was extracted after
treatment using eight different bio-agents as men-
tioned above. The head and the last abdominal seg-
ment of the A. ipsilon larva was cut off; the mid-
gut and the content with a peritrophic membrane
was separated from the midgut tissue devoid
of Malpighian tubules. The midgut tissue was rinsed
in the Ringer saline, dissected in liquid nitrogen and
stored at —80 °C for the downstream work.

https://doi.org/10.17221/46/2022-PPS

RNA purification and cDNA synthesis. Total RNA
was isolated from the midgut tissue of A. ipsilon lar-
vae using Gene JET RNA purification kit following
the manufacturer’s instruction (ThermoFisher, USA).
The purity was estimated and approximate concen-
tration of total RNA extracted using a NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technolo-
gies, Inc., USA) and the quality of isolated RNA was
checked by electrophoresis. Prior to mRNA quanti-
fication, all RNA samples were treated using DNasel
to eliminate genomic DNA contamination. We uni-
fied about 1 pg of total RNA and used it to gener-
ate first-strand cDNA as the initial step of a two-step
RT-PCR protocol using RevertAid first-strand cDNA
synthesis kit (Thermo Scientific, USA) according
to the manufacturer’s instruction.

Semi quantitative RT-PCR. Primers were de-
signed for target gene sequences using Primer
Quest and obtained from Integrated DNA Tech-
nologies (https://www.idtdna.com/Scitools/Appli-
cations/Primerquest/). We designed six degenerate
primer sets and synthesized based on AKH gene
sequences published in the GenBank (http://www.
ncbi.nlm.nih.gov). All primer sets used for AKH are
listed in Table 2. We performed the RT-PCR reac-
tion using 1 pL of the first-strand cDNA synthesis
in a total volume of 25 pL containing the following
components: 1 puL of the forward primer (10 pmol/
uL), 1 pL of the reverse primer (10 pmol/pL), and
12.5 pL of Emerald-Amp Max PCR Master Mix
(Takara Cat# RR320A). We performed negative
control by omitting reverse transcriptase. We set
up atypical touch-down PCR program as follows:
94 °C for 3 min, followed by nine cycles of 94 °C
for 45 s, 71-62 °C for 45 s in a touch-down manner
(1°C/cycle) and 72 °C for 45 seconds. We then used

Table 2. Primers used for PCR amplification of AKH gene fragment using A. ipsilon treated larvae

Nr Name Primer seq. 5'-3' From—to (nucleotides) ~ Optimal annealing PCR (bp)
1 AGIP-AKH1_F1 ACTTCATCATGGGGTGGTGGTA (1/2) 51.2 132

2 AGIP-AKH1_R1 TGATTTTTGTTGGCAGATGATG

3 AGIP-AKH1_F2 ACTTCATCATGGGGTGGTGGTAA (3/72) 51.2 132

4  AGIP-AKHI1.1_R1 CAGCTTCGTTTTGGATCAGTTTGT (3/4) 52.5 106

5 AGIP-AKH1.1_R2 GCAGTCTTTCAGCTTCGTTTTG (1/5) 52.0 115

6 AGIP-AKH2_F1 GAATCTTCATCGTGCTGCTGGTG (6/7) 53.0 123

7 AGIP-AKH2_R1 AGTCGTCGTTGATTTGTTCTGATG

8 AGIP-AKH2_R2 AGTCGTCGTTGATTTGTTCTGA (6/8) 51.9 123

Table contains primers’ nucleotide sequencing; each pair of primers used for amplification, optimal annealing tempera-

ture, and the expected PCR product
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formulation (Radiant), emamectin benzoate for-
mulation (Proclaim), and chlorfenapyr formula-
tion (Challenger) were 0.244, 0.157, 0.007 and
1.389 mg/L, respectively. Based on the values de-
noted, the decreasing order of toxicity to A. ipsilon
was emamectin benzoate > spinotram > spinosad >
chlorfenapyr > Bt formulations (Dipel 2X > Dipel
DF > Protecto > Biotect).

Effects of bioinsecticides on biological param-
eters of A. ipsilon.

Effects on the life-table characteristics of A. ipsi-
lon. Effect of the LC;, value as a sublethal concen-
tration for the eight bioinsecticide formulations
on life-table parameters of A. ipsilon are presented
in Table 4. The results showed no statistically signif-
icant differences were found in the larval duration,
pupation %, sex ratio and emergency %. In addition,
the duration of the pupal stage was significantly
longer under LCs, sublethal concentration of chlo-
rfenapyr, emamectin benzoate and Bt formulations
(Dipel 2X and Dipel DF) by 20.35, 19.73, 19.71 and
19.60 day, respectively than in control (18.30 days).
In contrast, female pupal weight showed a statisti-
cally significant increase after the 2" instar larvae
were treated with Bt formulations (Dipel DF, Bio-
tect, Protecto and Diple 2X) and spinosad.

Fecundity and fertility. A sublethal concentra-
tion of emamectin benzoate significantly reduced
fecundity per female (135.33 + 6.919) compared
with control (280.50 + 31.85) [df = 8, F(g5) = 3.35,
P = 0.015 7], where the percentage of reduction
in the number of eggs laid by one female was about
2.07 fold (Figure 1A). In comparison with control,
fecundity per female have been significantly de-
creased when treated with spinotram, chlorfen-
pyer and Bt formulations (Protecto and Biotect)
by 146.07, 149.07, 191.33, 202.33 egg/female, re-
spectively. No significant differences were detect-
ed in the hatchability compared with the control
group with all the tested bioinsecticides.

Sublethal effects on enzyme activity of A. ipsilon.
Data in Figure 2 shows that exposures to Bt formu-
lations, spinosad formulation (Tracer), spinotram
formulation (Radiant), emamectin benzoate for-
mulation (Proclaim) and chlorfenapyr formulation
(Challenger) caused changes in the level of the en-
zyme activity of OS enzyme. The results showed
that exposures to spinotram, chlorfenapyr, Bt for-
mulation (Dipel 2X), emamectin benzoate, B. thur-
ingiensis formulation (Dipel DF), spinosad and Bt
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Table 4. Life history traits (mean * SE) on second larval instar of A. ipsilon exposed to sublethal concentration (LCsg) of different bioinsecticides

Emergence (%)

male
39.07 £ 7.04

Pupal weight (g) Sex ratio
male female
0.367¢ + 0.015 60.93 +7.13

female
0.39¢ + 0.020

Pupal duration
(days)

Larval duration N
(days) Pupation (%)

Trade names

Common name

98.61 £ 1.39

18.30° + 0.29

100.0 + 0.00

20.40 £ 0.17

Control
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Figure 1. Effect of larval exposure to tested bioinsecticides on the fecundity (eggs/female) (A) and hatchability % (B)

of A. ipsilon after treatment with LCs, value

a-dMeans of column (different treatments effect of each study trait) followed by the same letters are not significantly

different at 0.05 level of significance

(A)
40
=]
p= d a
9] ab a
§ 30 . abc
2 a
5 20 bed od a
%n d
E 10
0
(©)
1.0
£ 08 ab ab a
] ab ab
2 06 ab
= b
= 0.4
2 02
0
—_ 5 I o + - = =
£ 8 58§ 8 8 2 £ %
S 22 :iFf3F:d
A A =~ & Z
@]
Treatments

=

70
= 60
T 50
2 40 2
—
S 30 ab bc  be
= 20 L
a C
10
0
(D)
7
a
g ®
% 5 ab X ab ab ab
B 4 bc @
S 3
in C C
E 2
1
0
— [T o - = = =
g 2 8 5 2 &8 3 g 2
0 = = = M <4 = =
a [a) A ~ =
O
Treatments

Figure 2. Mean + SE of catalase (A), superoxide dismutase (B), lipid peroxidase (C) and glutathione reductase (D)

enzymes activities of A. ipsilon after exposure of second larval instar to LCj3, value of tested bioinsecticides

a-dMeans of column (different treatments effect of each study trait) followed by the same letters are not significantly

different at 0.05 level of significance

formulations (Protecto and Biotect) caused a sig-
nificant increase in CAT activity after 96 h post-
treatment at the LCy, (2.7, 2.7, 2.4, 2.3, 1.8, 1.5 and
1.2 fold, respectively). The activity of SOD showed
a similar pattern of change: the SOD activity sig-
nificantly increased when the larvae were exposed
to chlorfenapyr, spinotram, emamectin benzoate
and Bt formulation (Dipel 2X) by (32.77 + 5.56,
24.37 £ 1.77,23.15 + 1.89 and 22.71 + 2.12 IU/g pro-
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tein, respectively) compared with the control treat-
ment 10.87 + 3.19 IU/g protein. The lipid peroxidase
activity of LC3 was more significant than the con-
trol treatment with all insecticides tested when
the larvae were exposed to chlorfenapyr, Bt formula-
tions (Biotect and Protecto), spinotram, emamectin
benzoate, Bt formulation (Dipel DF and Dipel 2X)
and spinosad by 4.5, 4.2, 4.0, 4.0, 3.9, 3.7, 3.1 and
2.7 fold, respectively). Glutathion reductase activi-
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ties were significantly affected by Radiant, Challeng-
er, Diple 2X and Proclaim after 96 h post-treatment
at the LC3y by 2.6, 2.2, 2.1, and 2.08-fold, respectively
compared with the control treatment [df = 8, Fg 15) =
5.120, P = 0.001 9]. On the other hand, there were no
significant differences in Biotech, Protein, Dipel DF
and Tracer compared with the control group.

Determination of gene expression of AKH. In order
to compare the transcriptional regulations of AKH
hormone of treated A. ipsilon larvae treated with dif-
ferent bio-agent types as mentioned above, the treat-
ed larvae were subjected to gut-tissue dissection,
total RNA isolation, cDNA synthesis, and semi-
quantitative reverse transcription PCR (SQ-PCR)
analysis. Six different primers were examined to am-
plifty AKH gene fragments using the synthesized
cDNA from treated larvae. Only one set of primers
(AKH2-F1/AKH2R?2) out of six has shown the AKH
PCR product expected fragment size of 123 bp; how-
ever, the remaining sets of primers did not show any
amplified PCR products (data not shown). The pro-
duced PCR fragments were subjected to semi-quan-
titative analysis using Image] software package (32-
bit, https://imagej.nih.gov).

As shown in Figure 3, the results present the pro-
duced AKH gene fragments generated by RT-PCR
after treating A. ipsilon larvae with different bio-
agents. The intensity of each band was measured
using Image]J analyzer software. The volume density
(pixel) was measured and proportionally correlated
to the AKH gene transcript using the AKH ¢cDNA
for untreated larvae as an internal control. The re-
sults showed that the recorded volume density
(pixel) ranged from 28 338.392 to 52 454.990 pixels,
which were for Tracer and Radiant, bio-agents treat-
ed A. ipsilon, larvae, respectively. The Tracer pro-
portion made up 0.76-fold (28 338.392/36 870.463),
and the Radiant proportion made up 1.42-fold
(52 454.990/36 870.463) of the AKH gene tran-
scripts compared with the untreated larvae. In the
same context, the Dipel 2X volume density was

-
5}
B on
< — 5 2 — 2 = g
= 3} 3 o [3] = [} Q
3 & Q 2 & = 2 g
bp = & A A &~ A U o a =
200 -
100 -
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52 220.040 and made up a proportion of 1.41-fold
(52220.040/36 870.463). In addition, the volume den-
sity of Biotect formulation was 46 214.999 and made
up a proportion of 1.25-fold (46 214.999/36 870.463),
while the volume density of the Protecto was
40 197.099 and made up a proportion of 1.09-
fold (40 197.099/36 870.463). The volume density
of Dipel DF was 38 388.756 and made up a propor-
tion of 1.04-fold (38 388.756/36 870.463), the volume
density of Challenger was 34 081.049 and made up
a proportion of 0.92-fold (34 081.049/36 870.463),
and finally, the volume density of Proclaim was
30 717.220 and made up a proportion of 0.83-fold
(30 717.220/36 870.463).

DISCUSSION

In this paper, we characterized and investigated
the insecticidal effect of eight bioinsecticides fol-
lowing treatment of second larval instar of A. ip-
silon, following oxidative stress enzymes activity
and finally gene expression of AKH. The high tox-
icity of emamectin benzoate against A. ipsilon may
be because of its mode of action correlated with
the target site that activates the GABA that induces
presynaptic neurons to release excessive GABA
(Kandil et al. 2020b). Generally, bioinsecticides
influence insect populations by affecting insect
longevity, fecundity, and physiological parameters
(Desneux et al. 2007; Su & Xia 2020). Therefore,
to develop sustainable pest management programs,
an understanding of biological and biochemical
parameters following sublethal exposure to insec-
ticides is required. The sublethal concentration
LC,, for the tested bioinsecticides was not statisti-
cally significant in the elongation of the larval de-
velopmental time of A. ipsilon. However, the lar-
val duration was reduced on S. littoralis exposed
to sublethal concentration of emamectin benzoate
(El-Helaly et al. 2020). In contrast, studies reported

Figure 3. Semi-quantitative RT-PCR of
S transcripts encoding AKH hormone
of A. ipsilon larvae under abiotic stresses

123bp  ysing different bio-agents
C - internal control in which A. ipsilon
larvae were untreated; M — 1kb DNA ladder
Each PCR reaction was optimized for 30

cycles to achieve non-saturated gel image
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that emamectin benzoate and B. thuringiensis for-
mulation (Dipel 2X) extends the larval duration
of different species of Noctuidae, such as M. bras-
sica and T. absoluta (Moustafa et al. 2016; Kandil
et al. 2020a). The LCjy, of chlorfenapyr, emamectin
benzoate and B. thuringiensis formulations (Dipel
2X and Dipel DF) significantly elongated the pupal
phase. Emamectin benzoate has an ovicidal activ-
ity in some lepidopteran pests, including M. bras-
sica and T. absoluta (Moustafa et al. 2016; Kandil
et al. 2020a). This could be attributed to the lethal-
ity of emamectin benzoate against Noctuidae spe-
cies, including H. zea (Lépez et al. 2010), T. abso-
luta (Gacemi & Guenaoui 2012) and H. armigera
(Dagar et al. 2020). Alternatively, it could be relat-
ed to physiological effects (Yin et al. 2008) caused
by insecticides, including fecundity and fertility
(Liu & Trumble 2005).

Sublethal exposure may lead to changes in the
physiological characteristics of insects (Desneux
et al. 2007). Several studies reported that sublethal
concentrations or doses of pesticides altered en-
zyme activities (Li et al. 2018). The increase in CAT
enzymatic and SOD activities could be attributed
to SOD and CAT directly eliminating surplus ROS
in a coordinated way. SOD removes O, through
the process of dismutation to O, and H,0,, and
then H,0, is sequentially reduced to H,O and O,
by CAT (Kashiwagi et al. 1997; Zhang 2014).
Malondialdehyde (MDA) is the final lipid oxida-
tion product and is an important biomarker of oxi-
dative stress. A significantly elevated level of lipid
peroxidase enzyme in A. ipsilon was observed
in response to the tested bioinsecticide. MDA
concentration was decreasing in order of Chal-
lenger > Biotect > Protecto > Radiant > Proclaim
> Dipel DF > Dipel 2X after 96 h post-treatment
at the LCs. In insects, lipid peroxidase is harm-
ful because lipids are components of cell mem-
branes and play an important role in insect growth
and reproductive physiology (Karthi et al. 2018).
Glutathione reductase (GR) is one of the main en-
zymes responsible for the detoxification of insec-
ticides or pathogens by insects (Claudianoc et al.
2006). GR was expressed in A. ipsilon larvae after
being treated with Radiant, Challenger, Dipel 2X
and Proclaim showed a significant increase in en-
zyme activity compared with control.

The changes that have been detected in oxidative
stress enzymes activity may be attributed to the
change that happened to the AKH regulation after
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sublethal exposure to bioinsecticide. The changes
in AKH transcription regulation were detected
via SQ-PCR via ¢cDNA that was synthesized us-
ing mRNA isolated from treated A. ipsilon larvae.
The results showed that transcripts of AKH in-
creased after sublethal exposure to Radiant, com-
pared with the untreated larvae. This is in accord-
ance with the activity of the CAT enzyme, which
increased significantly after 96 h post-treatment
with both Dipel 2X and Radiant, respectively.
In addition, this was under the expression of the
SOD activity, which significantly increased when
the larvae were exposed to Dipel 2X and Radiant
by 22.71 and 24.36 protein, respectively. Therefore,
the transcriptional regulation of AKH transcripts
detected using SQ-PCR may strongly support
the increase of SOD, CAT and GR enzymes after
sublethal exposure of A. ipsilon larvae to Radiant
and Dipel 2X bioinsecticides. On the other hand,
the exposure of A. ipsilon larvae to the Challenger
and Proclaim have shown relatively lower AKH
transcripts of 0.92 and 0.83-fold change, for Chal-
lenger and Proclaim respectively, compared with
the untreated larvae. This may be attributed to the
low AKH transcripts that could not be differenti-
ated from the control larvae. In the same context,
the Biotect, Protecto and Dipel DF bioinsecticides
showed moderate up regulation of AKH transcripts
of 1.25, 1.09, and 1.04-fold, respectively. Here,
the effect of various bioinsecticides on AKH gene
regulation and subsequently on the oxidative stress
enzymes was confirmed. AKHs are neurohor-
mones that have been shown to stimulate defensive
mechanisms in insects. They are also responsible
for mediating anti-stress reactions, such as those
that counteract oxidative stress (Gade et al. 1997).

CONCLUSION

In summary, emamectin benzoate and spino-
syn group bioinsecticides showed acute toxicity
to A. ipsilon when second-instar larvae were treat-
ed. In addition, both bioinsecticides showed suble-
thal effect on pupal stage characteristics, fecundity
and altered the enzymatic balance that may fur-
ther affect the immunity of A. ipsilon. Our results
showed the possibility of use these bioinsecticides
against A. ipsilon but their adverse effects on non-
target organisms should be studied in more detail
before they can be used as a component of inte-
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grated pest management in fields/agricultural prac-
tice. In contrast, there was no effect of other tested
bioinsecticides on the other biological parameters.
These results showed that A. ipsilon was more tol-
erant than other Noctuidae species.
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