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Abstract: Drought stress is among the significant forms of abiotic stresses that unfavourably affects maize survival
as well as the development from germination to maturity. This paper, therefore, reviewed drought stress effects in maize
plants and expatiated on the plausible adoptable mitigation measures to employ in curbing these effects as well. Water
shortage prompts drought stress that alters the morphological, physiological and biochemical activities in maize plants.
The major drought stress implications on the plant’s survival are mostly in the area of altered metabolic functions, inclu-
ding nutrient metabolism, cell membrane integrity, water relationships, plant yield, photosynthetic processes, osmotic
adjustment, and the pigment content. Mitigating strategies, such as the breeding of drought-tolerant varieties, genomic
applications for drought tolerance enhancement in maize plants, as well as the use of rhizobacteria and endophytic bac-
teria, can be employed in alleviating drought stress and ensuring optimal maize productivity.
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The consequences of climate change, especially
alterations in weather patterns, are sternly affect-
ing the agricultural productivity and food security
on both global and regional scales. Climate change
continues to be one of the greatest and most sig-
nificant environmental challenges facing the world
today (Fadiji et al. 2022). Even with the economies
of most developing countries being based on ag-
riculture, crop plant production continues to be
on the decline due to the impact of abiotic stresses
that include salinity, heat stress, drought, and oth-
er climatic factors (Jahan et al. 2019). Drought is
a condition of extreme stress in which the desired
precipitation level is not attained, affecting the hy-
drological cycle, thus causing a negative impact on
the environment, economy, and society at large

(Kumar & Verma 2018). Drought exists as multi-
dimensional stress occurring principally as a result
of the decline in rainfall, with accompanying dry
spells (Harrison et al. 2021). Drought or water stress
negatively impacts the plant growth and productiv-
ity and results in a significant concern in achieving
the worldwide demand for food crops (Igiehon &
Babalola 2021). Characterised by the closure of the
stomata and a reduction in the cell growth, a de-
pleted leaf water potential and turgour loss, a de-
crease in the water content, drought stress poses
a serious risk to the yield and quality of plants, in-
cluding maize crops (Cheng et al. 2018).

Maize (Zea mays L.) is a forage and food crop that is
of great significance, serving as an essential raw ma-
terial for the food industry and plays vital roles in ag-
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ricultural production and global economies (Zheng
et al. 2020). Maize is a cereal crop that has high wa-
ter demand requirements to complete its different
life cycle stages, but with the mounting inclination
with the ongoing climate change, a decrease in the
maize quality and an increase in yield losses may
occur as a result of the varying biotic and abiotic
stresses (Pokhrel 2021). The maize crop is reported
to be prone to drought stress, which adversely im-
pacts the biomass production as well as the vegeta-
tive growth, not excluding the development of the
yield parameters and reproductive organs (Badr
et al. 2020). Consequently, it is pertinent to fully un-
derstand the knowledge of drought stress in maize
crops to determine the best suitable mitigation
strategies to ensure optimal productivity. This pa-
per, therefore, provides a short overview of drought
stress implications on maize plants and expatiates
on the plausible adoptable mitigation measures in-
cluding the role of rhizobacteria and endophytic
bacteria in curbing these effects.

Concept of drought stress from different per-
spectives and evaluation methods. Plant spe-
cies including maize are sessile organisms that are
mostly exposed to abiotic stresses, particularly dur-
ing their various life cycles (Umair Hassan et al.
2020). Their survival is primarily dependent on
their strategic response attributes to be able to cope
with the ever dynamic and stressful conditions
(Jacques et al. 2021). Abiotic stresses mostly come
from undesirable ecological conditions that hin-
der the functional diversity of microbes in addition
to the soil's physicochemical properties, leading
to substantial yield loss (Goswami & Suresh 2020).
They are major limitations to the global food se-
curity and crop yields, and thus necessitate an in-
stantaneous response. Among these abiotic or en-
vironmental stresses, drought is among the most
significant ones that limits the plant performance
as well as survival, affecting the plant functions,
including morphological, biochemical, metabolic,
and physiological changes (Hera et al. 2018). From
an agricultural context, a drought is a prolonged
period of deficient precipitation or lack of momen-
tous rainfall which restricts the water accessibility
and results in negative impacts on the crop growth
or yield (Abid et al. 2018). It is also seen as an in-
exorable factor that subsists in different milieus
without taking cognizance of boundaries with no
clear awareness (Seleiman et al. 2021). Plants’ ca-
pability to maintain physio-biochemical functions
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during drought conditions and recuperate rapidly
once the stress is curtailed is inviolable to ensuring
sustainable crop plant production under recurrent
drought events. This is necessary as plant growth
and productivity depend on various cell processes,
which are impacted by drought stress due to a de-
cline in the energy supply for photosynthesis, enzy-
matic activities as well as cell division, elongation,
and differentiation (Zhang et al. 2019). Drought
creates grave and sweeping implications on the ag-
ricultural productivity. Since it is typified by occur-
ring in severe arid climates and places with inad-
equate water resources, it has been reported to have
a remarkable impingement on crop productivity
(Wan et al. 2022). Drought stress is becoming more
frequent due to the obvious unpredictable distribu-
tion of the rainfall and changes in climatic patterns,
lowers the survival rate of seedlings, and increas-
es a post-pollination embryo’s likelihood of being
terminated, ultimately leading to a reduced yield.
Drought in maize crops can be monitored using
two different methods. The first one appraises ag-
ricultural drought by utilising ground observational
data (like soil, vegetation, and meteorology), com-
prising precipitation, temperature surveillance, soil
moisture, and cropland vegetation indices (Li et al.
2019; Hunter et al. 2021). A wide range of evalua-
tion systems to analyse the drought status are based
on pedologic (Uwizeyimana et al. 2019) or meteor-
ological (Mpandeli et al. 2019) indicators along with
the crop’s development and growth characteristics
(Moon et al. 2020). Notably, the aforementioned in-
dicators are limited in their spatial representation
because they are on the point scale. Although this
method can provide exact facts regarding agricultur-
al-related drought parameters, it is reported to have
limitations regarding any temporal and spatial dis-
continuity, aside from the high cost of research con-
nected to it (Wan et al. 2022). The second method
type, which include remote sensing techniques,
possesses the edge of spatially low-cost monitoring.
This method has turned out to be the predominant
method of drought evaluation research (Wei et al.
2020). According to Wan et al. (2022), the main
tenet behind this method is to access the drought or
spectral indices, which echo the plant drought. This
method is labour-saving and has a wide monitor-
ing space range and time, while possessing the edge
for temporal and spatial continuity. Advances in re-
mote sensing technologies transformed drought
monitoring by facilitating the unceasing observa-
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tions of vital drought-related variables over large
spatial and temporal scales (Wang et al. 2020). With
the use of this method, the degree of crop drought
can be estimated based on the correspondence
of remote sensing indices with the growth as well
as the development of indicators that include
the canopy temperature, soil moisture content, and
crop phenotypic characteristics (Yang et al. 2017).
Generally, the accuracy of any evaluation method
is often particularly improved when the meteoro-
logical parameters, as well as the spectral indices,
are jointly used. For instance, the temperature—veg-
etation drought index (TVDI), which is based on
the premise of a simplified triangle space of the land
surface temperature-normalised difference vegeta-
tion index (LST-NDVI), is a valid pointer to crop
drought (Wei et al. 2020; Wan et al. 2021). A com-
parison of ground observation and remote sensing
methods is summarised in Table 1.

Drivers of drought stress in maize: Major
causal factors. Maize is a strategic and essential
grain crop cultivated in different agro-ecolog-
ical precincts globally (Mushayi et al. 2020). It is
a crop that ably makes use of sunlight and mois-
ture to produce a bountiful yield. Although maize
is a warm-season crop, that is subtly sensitive
to high-temperature stress, as such, drought stress
is a serious pitfall to the global maize crop produc-
tivity (Tesfaye et al. 2018). Having been considered
the key environmental stress for a variety of plant
species including maize, drought has been docu-
mented as the most single critical threat to glob-
al food security (Okorie et al. 2019; Diatta et al.
2020). The main driver for drought stress in most
plants including maize is reportedly known to be
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a deficiency in a water input from rainfall, though
the loss of soil water via evaporation (as a result
of high temperatures), dry wind, and a high light
intensity have also been implicated (Cohen et al.
2021). Some causal factors have also been indict-
ed as being responsible for drought stress and are
mostly due to variations in the climatic patterns.
For instance, the contribution of global warming
due to the increase in the environmental tempera-
ture is not only leading to water losses or shortages
in soils, but likewise in crop plants not excluding
maize fields (Seleiman et al. 2021). The available in-
ternal plant water is lost to a great extent due to the
heightened temperatures elicited from the climatic
change that is already causing water deficit issues
within the global agricultural system (Pepe et al.
2022). Similarly, detrimental changes in rainfall
distribution patterns and intensity continue to ex-
acerbate drought stress conditions; especially, in ar-
eas where crop plant production largely depends
on the availability of rainfall (Konapala et al. 2020).
This is a result of prominent anthropogenic ac-
tivities like urbanization, industrialization as well
as deforestation which have affected the water
availability to maize plants through their impacts
on the rainfall patterns, particularly via their influ-
ence on the climate change (Rather et al. 2022).
Drought stress in maize plants: Implications
and effects. The maize or corn plant is a significant
food, feed and biofuel crop that makes a consider-
able contribution to ensuring food availability, live-
stock production (being an essential dietary compo-
nent in animal feed formulation) and to the energy
sector (Bodhankar et al. 2020). However, the pro-
duction output of maize is not sufficient enough

Table 1. A comparison of the two monitoring methods of drought in maize crops

S/N Ground observation method

Remote sensing method

1. High cost of research is involved

It is cost-effective and labour-saving

2. Performance is based meteorological or pedologic indicators

Performance is independent of the meteorological
and field survey data

3. Has limitations as regards to temporal and spatial discontinuity

Has the advantage of spatial continuity

Monitoring accuracy is often limited in regions with sparse ob-

Allows for continuous monitoring due to multi-

servation stations distributions temporal and high-resolution spatial coverage
5 Interpolation of data points may be affected due to loss of histori- Data records are readily accessible and do not affect
" cal data records the interpolation of data points
6 Observations data may not be sufficient to capture the spatio- Spatio-temporal acquisition of near real-time data

temporal variability of drought-related variables like precipitation

are sufficient

7.  Consistent global drought analysis may be quite challenging

Possess the capability for consistent global drought
analysis
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to meet with the utilisation demand. For instance,
the demand for maize in sub-Saharan Africa is an-
ticipated to increase by 30% by the year 2050 con-
sidering increasing population growth (Ekpa et al.
2018). Therefore, optimal maize production must
be boosted to ensure food security and has become
an urgent need (Zhang et al. 2021), though not
without some limiting factors. One of the factors
affecting maize productivity is a drought (Chukwu-
neme et al. 2020a) with a reported average annual
yield loss calculated to be about 15% of the global
potential yield (Adewale et al. 2018). The implica-
tions and effects of drought stress on maize pro-
duction are overwhelming as it is an important sta-
ple cereal food and a cultigen of global economic
importance (Kennett et al. 2020).

Drought stress is the main driver of losses
for maize production and it has caused active devi-
ations in the plants’ physio-biochemical functions
including respiration, photosynthesis, transpira-
tion, enzyme activity, and hormonal metabolism
(Webber et al. 2018; Kaur & Kumar 2020). Plants
including maize put forth wide-ranging sequences
of reactions to drought stress conditions, which are
seen in an array of adjustments in their biochemi-
cal and morpho-physiological parameters. On
the plant morphological characteristics, drought
stress has been reported to cause a decrease in the
yield and growth, as well as reducing the seed
germination capability (Khan et al. 2018; Danish
et al. 2020a). This decrease in yield or growth re-
tardation could be a result of excessive evapora-
tion, disruption of the photosynthetic machinery,
the decline in carbon acclimatisation as well as in-
hibition of the cell expansion (Sharif et al. 2018;
Bogati & Walczak 2022). Drought exposure dur-
ing the seedling stage has been reported to induce
a substantial reduction in the overall maize bio-
mass, thereby altering its phenotypic attributes and
subsequent yield (Saad-Allah et al. 2021). Song and
Jin (2020) equally documented how drought stress
caused maize anthesis, a prolonged growth stage,
and a delay in maturity dates during the seedling
stage. Drought stress also elongates the vegeta-
tive growth period as well as shortens the repro-
ductive stage’s growth period (Bhusal et al. 2021).
It affects the vegetative stage of the maize plant,
restricting the function and structure of the leaf,
stem, and root while the reproductive stage inhib-
its the silk and tassel development (Pokhrel 2021).
Also, the plant height is usually reduced in drought
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conditions and this is mainly a result of the reduced
cell expansion, impaired mitosis, higher leaf senes-
cence, accelerated leaf shedding, and other associ-
ated plant internal mechanisms to boost the plant
height (Abreha et al. 2022). Likewise, a reduction
in the number of flowers as well as the dry and
fresh biomass decreased the nodulation and nodule
functioning, as well as causing a high root-shoot
length, have all been reported as consequent im-
plications of drought stress (Wilmowicz et al. 2020;
Hanaka et al. 2021).

Furthermore, an easily observed characteristic
of a drought-stressed crop plant is the leaf area
modification, which is often significantly reduced
in many plant species including maize though its
increase is majorly dependent on the turgour pres-
sure of the leaf, availability of photo-assimilates,
and canopy temperature (Kannenberg et al. 2018).
Hussain et al. (2019) also examined the effect
of drought stress on maize hybrids and reported
a notable decrease in the plant height, shoot dry
and fresh weights, in addition to the leaf area. On
the maize crop’s physiology and biochemistry, the
decreased relative water content is often the initial
consequence of drought stress in most plants in-
cluding maize. A decreased relative water content
usually reflects in a substantial reduction in the leaf
water potential which may result in stomata closure
(Umair Hassan et al. 2020). A decreased relative
water content in maize often results in an elevated
leaf temperature due to a decrease in the transpira-
tion cooling (Bhusal et al. 2021). One parameter of-
ten used as a pointer to the presence of photosyn-
thetic damage in plants is the quantification of the
chlorophyll fluorescence (Toscano et al. 2019).

Bhusal et al. (2021) reported a reduced chloro-
phyll content as well as gas exchange attributes
in maize while Aslam et al. (2021) chronicled a de-
cline in the chlorophyll content in their study and
ascribed the loss to certain deleterious impacts on
the photosynthetic apparatus due to drought stress.
Drought stress considerably reduces the chloro-
phyll content and pigment composition as a result
of the heightened oxidative stress or chlorophyll
pigments’ photo-oxidation (Hussain et al. 2019).
Drought stress conditions often lead to the synthe-
sis of reactive oxygen species (ROS) (Hewedy et al.
2020). Zheng et al. (2020) indicated that drought
stress conditions lead to the accumulation of ROS
in maize cells. ROS are the unfavoured products
of the biochemical alterations that a plant’s expo-



Review

Plant Protection Science, 59, 2023 (1): 1-18

sure to drought stress generates (Khayatnezhad
& Gholamin 2021). In order to scavenge the high
levels of ROS eliciting from the drought stress,
plants including maize crops have devised both
complex enzymatic and non-enzymatic structures.
The non-enzymatic complex involves reduced vita-
min E, glutathione, ascorbic acid, flavonoids, man-
nitol, as well as carotenoids while the enzymatic
system involves the production of glutathione per-
oxidase, glutathione reductase, catalase, ascorbate
peroxidase and superoxide dismutase (SOD) (Se-
leiman et al. 2021; Yang et al. 2021). The genera-
tion of ROS often results in the degeneration of the
structural and functional proteins, membrane
damage, enzyme inactivation, oxidative damage,
as well as peroxidation of the lipids (Gao et al. 2020;
Dubey et al. 2021). When the photosynthetic activ-
ity is decreased and light excitation energy is sur-
plus to requirements, the photosynthetic pigments’
hyper-excitation in the plant antenna may ensue,
resulting in the ROS accumulation in the chloro-
plasts (Toscano et al. 2019). In photosynthesis,
the reduction in photosynthetic activities can be
seen as the major effect of drought stress due to the
increased leaf temperature, reduced leaf expan-
sion, stomatal closure, and impaired photosynthet-
ic machinery (Huan et al. 2020). Photosynthesis is
the major driver for crop productivity and the re-
duction in the photosynthetic activities in drought
stress conditions is due to the non-stomatal and
stomatal restrictions. The non-stomatal restriction
occurs during severe drought conditions, while
the stomatal restriction majorly influences the de-

Figure 1. The maize plant response to drought stress
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crease in the photosynthetic performance particu-
larly in mild drought conditions (Bogati & Walczak
2022) such that when the extent of drought is mild,
the stomatal conductance reduces due to the de-
creased leaf water potential, and the environmen-
tal absorption rate of CO, drops, resulting in a re-
duced rate of photosynthesis in the leaves (Xu et al.
2022). Summarily, as depicted in Figure 1, the bio-
chemical and physiological response mechanism
to drought stress results from a complex pathway
of responses, beginning with the level of stress,
which sets off a chain of molecular mechanisms
and concluding at different levels of physiological,
metabolic, molecular, and developmental respons-
es (Sharma et al. 2022).

Molecularly, drought stress creates modifications
in how the transcription factors are expressed and
have been connected to the productivity of maize
(Zheng et al. 2020). The molecular backwash
of drought stress in plants is often seen on the gene
expressions and has been reported to induce fluc-
tuations in the patterns of gene expression, as well
as changes in the manifestation of molecular chap-
erones and late embryogenesis abundant (LEA)/de-
hydrin genes whose responsibility is to prevent cell
protein denaturation (Hussain et al. 2018). Further-
more, the molecular processes that are responsive
to drought stress include water channel proteins,
stress-responsive proteins, transcription factors,
and signalling pathways. By protecting the cellular
contents or controlling the stress-responsive genes,
these chemicals help to provide drought resistance.
(Razi & Muneer 2021). Transcription factors are
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the natural master regulators of cellular functions
that also modify the characteristics in response
to stress. (Giannopoulou et al. 2022). Due to the
complicated tolerance mechanism, single gene en-
gineering that encodes for a specific protein is in-
sufficient to establish a tolerance (Olechowska et al.
2022). Myeloblastosis-related proteins, NAC (no
apical meristem, Arabidopsis 58. transcription acti-
vator factor, and cup shaped cotyledon), and basic
helix-loop-helix are transcription factors that inter-
act with the cis-regulatory regions to activate gene
transcription and translation, allowing for adapta-
tion to water deficiencies (Liu et al. 2021). A critical
step in the development of drought-tolerant culti-
vars is the discovery of specific genes and pathways
associated with drought tolerance (Davoudi et al.
2022). With the use of transcriptome sequencing,
it is now possible to characterise molecular regula-
tors in-depth and look at the genes that are involved
in the response to drought (Pazhamala et al. 2021).

In response to drought stress, maize develops dif-
ferentially expressed genes, primarily transcription
factors, hormonal signalling, stress defence, detoxi-
fication, and genes related to photosynthesis. These
differentially expressed genes are useful for eluci-
dating the molecular mechanisms by which maize
responds to drought (Liu et al. 2021). Waititu
et al. (2021) emphasised that plant genotypes have
a significant impact on the molecular responses
to stress. Unfortunately, more thorough research on
the transcriptional alterations caused by drought
stress in maize plants is still lacking. In addition,
two of the abscisic acid (ABA)’s primary distinc-
tive activities include controlling the plant water
balance and tolerating the osmotic stress (Jan et al.
2021). Numerous crops, including maize, have pro-
duced ABA mutants, which are unable to thrive
when exposed to temperature and drought condi-
tions. Short-stemmed plants are produced by ABA
mutants, demonstrating the role of ABA in con-
trolling the cell cycle and other cellular processes.
Recent developments in molecular biology have
shed light on the molecular mechanisms underly-
ing the increased accumulation of ABA in response
to osmotic stress, and the accumulation of ABA de-
pends on the equilibrium of the ABA production
and degradation (Zhang et al. 2022a). Aslam et al.
(2021) reported that numerous ABA biosynthesis-
ing genes like ZEP, 9-cis-epoxycarotenoid dioxy-
genase, ABA aldehyde oxidase, and LOS5/ABA3
are up-regulated in response to drought stress.
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The up-regulation of ABA-dependent genes starts
following an increase in the ABA production in re-
sponse to drought stress. Aquaporins, osmolyte,
LEA, dehydrins, chaperones, detoxifying enzymes,
ubiquitination-associated enzymes, and proteases
are examples of genes up-regulated in the osmotic
homeostasis (Arif et al. 2021).

For instance, aquaporins (AQPs), which are
found in crop plants like maize, are recognised
to be crucial in maintaining water homeostasis.
The short-term alterations in the root hydraulics
and leaf water relationships are mediated through
AQPs, according to numerous physiological and
genetic research studies (Kapilan et al. 2018).
In times of dryness, the movement of water within
and across the cells is determined by the controlled
activity and abundance of the AQPs (Shekoofa &
Sinclair 2018; Kurowska et al. 2019). An aquapo-
rin gene expression study has been performed on
crops under drought stress (Shivaraj et al. 2021).

Adoptable strategies to mitigate the devas-
tating effect of drought stress on maize plants.
The intermittent re-emergence of drought stress
makes it imperative to develop procedures that may
be utilised to cushion its effects (Abid et al. 2018).
Most times, drought conditions are complemented
with detrimental effects like pathogenic attack, heat,
and salinity. Hence, plants undergo various mor-
phological and physiological modifications that are
not limited to osmotic adjustments, a reduced tran-
spiration and photosynthesis rate, modified stress
signaling pathways, overproduction of reactive oxy-
gen species, senescence, as well as repressed shoot
and root growth (Ahluwalia et al. 2021).

To enhance maize crop production under condi-
tions of drought stress, there is a need for the basic
comprehension of the attributes or traits sustain-
ing the plant performance with strategies that en-
sure the maximal productivity (Jochum et al. 2019;
Condon 2020). Many of the adoptable strategies can
be run concurrently when maize plants undergo
drought stress as many of them can be employed
(singly or in combination) to ensure optimal pro-
ductivity under unfavourable drought conditions
(Delfin et al. 2021). Firstly, the use of efficient and
sustainable planting methods and techniques can
be used. Various methods and techniques of plant-
ing are now being used in maize crop production;
especially, to conserve water and increase its use
efficiency. Good planting practices, contouring,
mulching, and the use of effective irrigation meth-
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ods are believed to also aid or enhance the toler-
ance to drought stress (Solis et al. 2018). Gamma-
polyglutamic acid, which can be employed as a soil
conditioner and water-retentive agent to increase
the agricultural productivity, has also been dis-
covered in recent studies to play a significant role
in plant growth and regulation. As a result of its
excellent water solubility and retention, biode-
gradability, and harmlessness, it has drawn more
attention as an environmentally friendly fertiliser
synergist (Guo et al. 2017; Liang & Shi 2021). It is
a D/L-glutamic acid monomer-based biopolymer
that is fermented by Bacillus subtilis. It is non-toxic,
water-soluble, biodegradable, and environmentally
beneficial (Wang et al. 2022). It has been reported
that exogenous administration of y-PGA could con-
siderably improve the plants’ ability to withstand
stress (Xu et al. 2020). Most of the earlier research
on crops, like the cucumber and Brassica napus,
concentrated on the effects of cold and salt stress.
For instance, it was discovered that y-PGA may
improve Brassica napus’ tolerance to salt and cold
by triggering the crosstalk between H,O, and Ca**
signals and might improve its resilience to drought
by encouraging ABA accumulation. Gamma-poly-
glutamic acid has not received much attention
as a means of reducing drought stress in maize
plants. However, very little research has examined
the impact of y-PGA on the plants’ ability to with-
stand drought, particularly crops (Ma et al. 2020).

The regulatory mechanism of y-PGA in the
drought resistance of maize remains unclear (Ba-
tool et al. 2022). To comprehend the mechanism
by which the exogenous application of y-PGA
to alter the drought resistance of maize, it is pos-
sible to study the changes in the rhizospheric and
endophytic microbial population after and during
the exogenous application of y-PGA.

Secondly, the breeding of drought-tolerant or
drought-resistant varieties is another method
that can be used. This involves plant breeding
techniques which utilise procedures of cultivating
better wild-type species of maize plants that can
withstand harsh drought conditions (Chandra et al.
2021). The application of this method in maize plant
production will ensure that the potential of a high
plant yield as well as improving the crop for drought
tolerance are harnessed, which is the major focus
of breeding programmes as it is critical to guarantee
the stabilised global maize production (Rida et al.
2021). Breeding for stress tolerance requires care-
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ful consideration of the selection technique to be
used. Selecting for the yield in unstressed condi-
tions and then evaluating those choices at numer-
ous sites with varying moisture availability, or “ran-
dom stress’, is perhaps the most popular technique
(Riache et al. 2021). The underlying presumptions
of the approach are that genes for drought toler-
ance are present in elite high-yielding material,
even after the number of genotypes has been re-
duced to the few that were evaluated under random
stress, and that selections under ideal growing con-
ditions can also improve the performance under
less than ideal circumstances (Khadka et al. 2020).
Furthermore, hybrids typically produce more un-
der drought than varieties with heterosis serving
as a significant source of stress resistance (Sah et al.
2020). The genetic approach that improves drought
tolerance in many plant species, such as maize,
has been recently hypothesised (Zia et al. 2021).
Genes linked with the SOD enzyme production
can be incorporated into the maize crops to pro-
duce drought-tolerant transgenic varieties. Also,
the application of transgenic or genome editing ap-
proaches assists in introducing preferred drought
stress-resistant traits (Dubey et al. 2021). In a simi-
lar vein, genomics provides previously unheard-of
opportunities for breaking down quantitative traits
into their genetic components, the so-called quan-
titative trait loci (QTL), opening the door to mark-
er-assisted selection and, eventually, the cloning
of QTLs and their direct manipulation through
genetic engineering (Sarma et al. 2021). In gen-
eral, genome editing approaches will open up new
possibilities for nucleotide-specific alterations and
may be used in the future to increase the plants’
resistance to drought. As a result, they are expect-
ed to become a common strategy for maintaining
the global food security (Dubey et al. 2021).

Consequently, it is possible to locate signifi-
cant QTLs controlling certain drought responses,
which will offer an effective method of increas-
ing drought resistance in the maize germplasm
(Nepolean et al. 2018).

There is disagreement among many researchers
over the ideal route to take when breeding maize
to withstand droughts, and others suggest combin-
ing two or more of the aforementioned methods
(Kamal et al. 2021). Lastly, the use of osmoprotect-
ants and growth regulators periodically has shown
an encouraging impact on tolerance to drought
stress (Chandra et al. 2021). Applying these com-
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pounds has improved plant characteristics like the
morphology, relative water content, photosyn-
thetic capacity, as well as gas exchange capabilities
(Huan et al. 2020). They are majorly classified into
hormones (like abscisic acid, salicylic acid, mela-
tonin), nutrients (like nitrogen, phosphorus, potas-
sium), polyamines (such as spermidine, putrescine,
spermine), sugars (like trehalose, chitosan) amino
acids (like proline, lornithine, arginine), and oth-
ers (like the a-lipoic acid) as documented by Aslam
et al. (2021). Considerable quantities of osmoreg-
ulatory agents, such as proline, free amino acids
as well as glycine betaine (GB), have been report-
ed to be accumulated by the maize plant dur-
ing drought conditions (Saad-Allah et al. 2021).
For instance, the application of proline on leaves
promotes the internal free proline content which
boosts the crop’s antioxidant defence system and
photosynthetic performance (Semida et al. 2020).
Likewise, the application of polyamines is also ef-
fective and has been documented for enhancing
plants’ drought stress tolerance, especially in bar-
ley, wheat, and maize (Sallam et al. 2019). Classifi-
cation of osmoprotectants and growth regulators is
visualised in Figure 2.

Alleviating drought stress in maize plants:
Role of rhizobacteria and endophytic bacteria.
Drought has been noted to be a key factor that af-
fects the yield of maize and, as such, whatever
strategy to address it will be of immense benefit

CLASSES OF DIFFERENT OSMOLYTES

https://doi.org/10.17221/61/2022-PPS

(Siddique et al. 2022). While most crops are sus-
ceptible to drought conditions and may experience
losses in yield of more than 50%, maize has been
reported to be more sensitive to drought than oth-
er grains (Rida et al. 2021). In fact, the occurrence
of drought stress conditions especially at the veg-
etative and reproductive phases of maize reduces
yields by 39.3% (Lunduka et al. 2019).

The role of rhizospheric microbes in maize plants
as bioinoculants in mitigating drought stress is
summarised in Table 2 while that of endophytic
microbes is exemplified in Table 3.

Maize responds to drought stress conditions
through a sequence of biochemical, molecular,
physiological, and morphological changes (Chuk-
wuneme et al. 2020a). Most times, the responses
are inclined by associations between the hosts
and the allied endophytic and rhizosphere mi-
crobes (Bodhankar et al. 2020), which has attract-
ed research interest in recent decades (Igiehon
et al. 2019). Though adaptable strategies to allay
the devastating impacts of drought stress in maize
crops as discussed above may be costly and time-
consuming (Niu et al. 2018), the use of microbial
resources provides an emerging, safe, revolution-
ary, and sustainable remedy to the consequences
of drought as the potential of rhizosphere and en-
dophytic microbes in improving drought stress tol-
erance in plants to attain optimal productivity and
sustainable agriculture has been expressly docu-

Figure 2. Classification of the osmoprotectants and growth regulators
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crop production as a key player is a cost-effective
option considering its effectiveness and proven ef-
ficacy (Chukwuneme et al. 2021).

CONCLUSION

Drought stress mostly leads to a considerable loss
in plant growth and crop yield by obstructing the dif-
ferent biochemical, morphological, and physiologi-
cal processes in the maize plant. Its period of expo-
sure, severity, and stage of growth are part of the
elements that prompt the losses in the maize yield.
Water deficits due to the consequences of climate
change including a decline in rainfall as well as in-
creased dry spells has given rise to drought stress
conditions. Drought stress effects on maize plants
are evident in their morphology, physio-biochemi-
cal as well as molecular characteristics. As such, it
is pertinent to utilise proven strategies that can en-
hance the tolerance and resistance levels in maize
plants to ensure an improvement in their growth
under drought stress for food security. The utilisa-
tion of plant growth-promoting rhizobacteria into
drought-stressed soil enhances the stress tolerance
in maize plants while providing a cost-effective av-
enue for sustainable crop health and yields. In real-
ity, research has shown that plant growth-promot-
ing rhizobacteria and endophytic bacteria are used
to increase the maize variety production in several
nations, and they are often treated through seed
inoculation or seed treatment. In the future, there
is a need to examine the dynamics of rhizobacteria
and endophytic bacteria strains to further compre-
hend the mechanisms by which they can alleviate
drought stress in different maize varieties, especial-
ly in developing countries like South Africa.
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