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Due to the intense pressure to reduce the amount 
of pesticides in agriculture and restrictions on us-
ing substances used for seed dressing, breeders 
and seed producers are faced with significant chal-
lenges, and alternative seed treatment methods are 
being sought. Cold plasma is one of the physical 
methods tested as a possible substitute for chemi-
cal seed treatment. It affects the seed's health and 
the processes of germination, emergence and plant 
development. The gliding arc, representative of 
plasma methods, is simple but still difficult to use 

for large-scale applications because the treatment 
takes a relatively long time and can negatively affect 
seed viability. This study aimed to streamline the 
treatment process and thus bring it closer to use 
in mass production. Plasma can act on the treated 
substrate by temperature, UV radiation, free elec-
trons, excited particles (Fridman et al. 2007), H2O2, 
reactive oxygen particles (ROS) (O2, O3, HO) and 
reactive nitrogen particles (RNS) (NO, NO2, N2) 
(Laroussi & Leipold 2004) and photon flux (Dey 
et al. 2016). Improvements in treatment efficiency 
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can be achieved by increasing the number of reac-
tive particles (ROS and RNS). The most common 
procedure for increasing the number of ROS and 
RNS during plasma treatment is to use a carrier gas 
other than air (Šerá & Šerý 2018). So the usual way 
is to use gaseous additives. But some studies re-
ported an addition of these beneficial substances in 
the form of an aqueous solution. This process leads 
not only to an increase in the content of ROS, RNS 
and H2O2 (Machala et al. 2013). Still, it can also act 
by increasing the air humidity in the plasma-treat-
ed environment, which is also very important for 
increasing the effectiveness of the treatment (Patil 
et al. 2014). Kumar et al. (2016) also reported that 
nitrogenous compounds such as calcium nitrate 
could positively affect the germination and emer-
gence of wheat as a substance used for halopriming. 
Also, stimulants such as Terra-Sorb® (Complejo 
Industrial Bioibérica, Spain), which is based on free 
L-α amino acids, are used to strengthen crops or 
on seeds to ensure a  more even emergence (Blu-
menthal & Hilder 1989). Another frequently used 
compound is sodium chloride, which can increase 
the efficiency of the plasma treatment process, es-
pecially from a phytosanitary point of view. Saline, 
in combination with plasma, was reported to have 
strong disinfectant effects (Machala et al. 2013).

Tilletia caries (DC.) Tul. & C. Tul. [syn. T. tritici 
(Bierk.) G. Winter] is a  seed-borne pathogen that 
can cause great damage by degrading grain smell-
ing of trimethylamine. Such grains are unusable for 
the food industry and very limited use in the feed 
industry. So far, effective protection against Tilletia 
is only chemical. It is also possible to capture ge-
netic sources of resistance and use them in breed-
ing, which is aided by many studies (Dumalasová 
& Bartoš 2010; Al-Maaroof et  al. 2016). This was 
the reason why the effect of plasma treatment on 
the germination of T. caries spores from artificially 
infected seeds was monitored in this study. Spores 
were used as a measure of the quality of treatment 
because their destruction or reduction is more dif-
ficult than in the case of vegetative stages of fungi 
or bacteria (Los et al. 2020). It is also very impor-
tant to compare, together with the effect of the 
treatment on the phytopathogen, the emergence 
and growth characteristics because the more the 
plasma treatment acts on the pathogen, the more 
vigorously it also affects the seeds (Zahoranová 
et al. 2016) and it is crucial that seeds are not dam-
aged during treatment.

Plasma treatment directly affects a  wide range 
of the growth characteristics like germination 
rate and percentage of germination, the energy of 
emergence and emergence, and the height of young 
plants and these factors are, therefore, frequent 
assessment parameters (Iranbakhsh et  al. 2017; 
Meng et  al. 2017; Lotfy et  al. 2019). Fewer works 
deal with the evaluation of plants depending on 
plasma treatment until harvest (Jiafeng et al. 2014; 
Saberi et  al. 2018), and very few results are from 
such evaluation after treatment with the gliding arc 
system (Strejckova et  al. 2018). Therefore, in this 
experiment, tillering, heading date, the health sta-
tus of plants during vegetation, the height of plants 
(BBCH 87), lodging, weight and quality of harvest-
ed grain were evaluated.

MATERIAL AND METHODS

The experiment took place in the laboratory in 
2018, field tests in 2018 and 2019. The effect of 
plasma treatment on the germination of T. car-
ies spores from artificially infected seeds, germi-
nation characteristics of healthy seeds and plant 
growth characteristics, including yield and grain 
quality parameters, were tested. The experiments 
were performed at Selgen a.s. in the breeding 
station Stupice, Czech Republic. Seeds of spring 
wheat cv. Pexeso (Selgen a.s., Czech Republic) was 
used for the experiment.

Plasma seed treatment. A gliding arc type plas-
ma device GVN-1k-2011 (SurfaceTreat, Czech Re-
public) at the University of South Bohemia in České 
Budějovice with a power of 1.3 kW and an airflow 
of 30 SCFH was used for the treatment. The dis-
tance of the nozzle from the seed was 10 cm, and 
the exposure time was 4 min. Water, Ca(NO3)2, Ter-
ra-Sorb® (Complejo Industrial Bioibérica, Spain) 
and the mixture of previous were used as added 
substances. The substances were applied by spray-
ing an aqueous solution every 25 s under a plasma 
nozzle for 1 mL per 25 g of seeds. In addition to the 
nitrogen variants, salt variants were tested. NaCl 
was dissolved in water solutions of the additives 
mentioned above (S-variants), or the NaCl water 
solution was applied as the last injection during 
treatment (SP-variants). The type and concentra-
tion of additives are given in Table 1.

Artificial seed infection. Artificial seed infec-
tion using spores of T. caries (obtained at Crop 
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Research Institute, Czech Republic) was per-
formed by mixing 2.5  g of spores with 1  kg of 
seeds. The infected seeds were stored in a refrig-
erator at 7 °C. After treatment with cold plasma, 
seeds were stored for one month. Subsequently, 
25 grains were collected in an Erlenmeyer flask 
and transferred to a  sterile box. 3  mL of sterile 
water with Tween-20 (Sigma, USA) was added to 
the seeds, and the mixture was mixed thoroughly 
for 3 min. Then another 3 mL of sterile water was 
added, stirring the mixture for 0.5 min. In a nar-
row strip, 20 μL of the suspension was applied to 
the surface of 2% water agar with antibiotics in 
a 9 cm Petri dish. After 1 h, the dish was sealed 
with parafilm and transferred to 7 °C in the dark. 
The evaluation was performed after ten days of 
incubation. Germinating spores and all spores 
in the sample were counted under a stereoscopic 
microscope (magnified 40×). Spore germina-
tion was calculated, and the result was related to 
the germination of the control sample (infected 
seeds without treatment).

Laboratory, field and greenhouse experi-
ments. The standard seeds germination test was 
conducted under laboratory conditions at 20  °C 
on filter paper. The germination rate of 4 days after 
the start of the test and the germination percentage 
of 7 days after the start were assessed. The experi-
ment was arranged in three replicates of 100 grains. 
The field experiment was set up as a one-row test 
in five replicates. One hundred grains were sown 
in each row. Field emergence, young plant height 
(BBCH  11), tillering, diseases occurring during 
vegetation, plant height (BBCH 87), thousand-
grain weight (TGW) and grain quality were evalu-
ated. A comparative test in perlite was performed 
in the greenhouse, in which the emergence energy 

ten days after sowing emergence and the height of 
young plants 17 days after sowing were evaluated. 
One hundred grains were sown in triplicate. ANO-
VA processed data from all experiments.

RESULTS

Seeds artificially infected with T. caries spores 
were exposed to cold plasma with various additives. 
In the experiments, not only the simple effect of 
plasma on spore germination and seed viability was 
observed, but attention was also paid to the effect 
of the plasma treatment on the emergence, growth 
and development of plants and, last but not least, 
on the yield and quality of the harvested grain.

Health status of seeds and germination of 
T.  caries spores. The results show that the ad-
ditives added during the cold plasma treatment 
and their influence on the germination of T. caries 
spores could be divided into four clusters based 
on statistical analysis (Figure 1). LVTER and TER 
variants (see Table 1 for abbreviations) without 
salt were in the same cluster as the treatment with 
cold plasma alone (NO) and did not differ statisti-
cally significantly. This indicates the same phyto-
sanitary effect of these treatments on the seeds. 
LV variants (LV alone and LV with added salt) and 
control variant together with LV_SP variant (see 
Table 1 for abbreviations) formed two clusters 
characterised by low efficiency of plasma treat-

Variant Additives Concentration (%) 
H2O water –
LV Ca(NO3)2 0.1 
TER Terra-Sorb 20.0 
LVTER Ca(NO3)2 + Terra-Sorb 0.1 + 20.0

_S NaCl added to LV, TER and 
LVTER 0.9

_SP NaCl as the last spray 0.9

NO only plasma treatment without 
any additives –

CON control, without treatment –

Table 1. Type and concentration of additives used in 
plasma experiments
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Figure 1. Germination of Tilletia spores in dependence 
on additives used in plasma treatment
a–f groups that do not differ based on Tukey's HSD test
Homogeneous subset groups were estimated by ANOVA 
and multiple range Duncan test (95%)
For treatments explanation see Table 1 
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ment. The variants with added water and Terra-
Sorb® in combination with salt/calcium nitrate 
formed a  cluster of the most efficient variants, 
which statistically significantly reduced the ger-
mination of Tilletia spores compared to the treat-
ment by only plasma. Water addition reduced the 
germination of Tilletia spores on average to 32.7% 
of the control variant, variants with Terra-Sorb® in 
combination with salt to 34.8% and 36.5%, respec-
tively, and Terra-Sorb® in combination with salt 
and calcium nitrate to 41.4% and 42.4%, respec-
tively. However, the addition of only Terra-Sorb® 
or a combination of Terra-Sorb® and calcium ni-
trate was not so effective, and a lower reduction of 
spores germination was recorded (Figure 1). If the 
results were evaluated with respect to added ni-
trogen compounds, it could be seen that the addi-
tion of salt statistically significantly increased the 
effect of cold plasma treatment on the germina-
tion of Tilletia spores in the LVTER and TER vari-
ants (Figure 2). The opposite effect was recorded 
in LV variants, where only calcium nitrate was 
added during plasma treatment, and the effect of 
adding salt statistically significantly increased the 
germination of spores.

Laboratory experiments – germination energy 
and germination percentage. The laboratory germi-
nation test on filter paper showed statistically signifi-
cant differences in the germination energy of treated 
seeds (Figure 3). The water variant showed the low-
est germination energy, significantly lower than the 

nitrogen and control variants. The plasma treatment 
without any additives differs very slightly from all 
variants. The differences in germination percentage 
were equalised, and all variants belonged to the same 
statistical group. This corresponds to the results of 
emergence in the perlite and in the field, where there 
were also no statistically significant differences and 
the parameters of seed germination, and emergency 
was not negatively affected by plasma treatment.

Greenhouse experiments. The perlite green-
house test was designed to evaluate the energy of 
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Figure 2. Effect of salt addition to nitrogenous additives on 
Tilletia spores germination and plasma treatment efficiency
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Figure 3. Results from laboratory experiments – assess-
ment of seed germination rate and germination percent-
age according plasma treatment variants
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Figure 4. Results from greenhouse experiments – assess-
ment of seed emergence, energy of emergence ant plant 
height according plasma treatment variants

a–b groups that do not differ based on Tukey's HSD test
For treatments explanation see Table 1 
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emergence, seed emergence and height of young 
plants (speed of plant development). The results 
are presented in Figure 4 and correspond to those 
achieved in the field experiment. There are no sta-
tistically significant differences between the vari-
ants in the emergence characteristics; the differenc-
es are also minimal in the height of young plants. 
A  statistically significant difference only between 
the water variant and LVTER variant was recorded, 
and the plant height was 12.1  cm and 10  cm, re-
spectively. Separate data processing for individual 
nitrogen variants showed no statistically significant 
difference between the variants with and without 
salt (data not shown).

Field experiments. A  number of parameters 
were observed in field experiments; the results are 
presented for characteristics of field emergence, 
tillering, plant height, protein content in grains, 
TGW, and yield in field plots (rows). Figures 5 
and 6 show the data converted to percentages 
related to the control, and values in the range of 
97.5–102.5% can be considered identical to the 
control. No statistically significant differences 
were recorded between the monitored character-
istics in field experiments, except for the protein 
content, wherein the LV variant was statistically 
significantly lower protein content, and the wa-
ter variant was the highest protein content. The 
plasma-treated variants generally show weaker 
growth characteristics (except for single plasma) 
but better results in grain yield and quality (except 
for LV variants). Separate data processing for in-
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Figure 5. Assessment of plant growth characteristics in 
field experiments – field emergence, tillering and plant 
height relative to control variant
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Figure 6. Assessment of quality and yield in field experi-
ments – protein content, thousand-grain weight and yield 
per one row in field plot relative to control variant

dividual nitrogen variants showed no statistically 
significant difference between the variants with 
and without salt (data not shown).

DISCUSSION

The ever-increasing pressure to reduce the con-
sumption of agrochemicals, including active sub-
stances used for seed dressing, makes it necessary 
to find alternative seed treatment methods. One 
of these possibilities is the utilisation of the physi-
cal methods and the use of cold plasma for seed 
treatment. In the case of seeds, the issue of plasma 
application is somewhat more complicated be-
cause it is necessary to eliminate pathogens on the 
surface of seeds but also to preserve the viability 
of seeds (Zahoranová et al. 2016) and, conversely, 
it is desirable to support the growth and develop-
ment of plants and to influence the yield positive-
ly. Seed treatment by cold plasma and the posi-
tive influence on the elimination of pathogens on 
the surface of seeds are mentioned by Mitra et al. 
(2014) and Los et al. (2020). Some studies then fo-
cus on the stimulation of seed germination (Lofty 
et al. 2019), the development of plants (Meng et al. 
2017), and some of them also on agricultural char-
acteristics and yield (Saberi et al. 2018; Strejckova 
et al. 2018). However, most of these studies have 
the character of laboratory experiments and stud-
ies focused on field performance are rare. This was 

a–b groups that do not differ based on Tukey's HSD test
For treatments explanation see Table 1 

a–b groups that do not differ based on Tukey's HSD test
For treatments explanation see Table 1 
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also the contribution of this study when the influ-
ence of plasma treatment was monitored in both 
laboratory/greenhouse and field conditions. Cold 
plasma using gliding arc technology has a number 
of advantages as well as limitations. These limita-
tions include heat generation, the negative influ-
ence of heating on seed germination and lower 
efficiency. In this experiment, we delivered water, 
various nitrogen compounds and their combina-
tions with salt to the plasma nozzle space during 
plasma treatment. Unlike other studies (Laroussi 
& Leipold 2004; Šerá & Šerý 2018), these additives 
were delivered in the form of aqueous solutions, 
as was also reported by Machala et al. (2013) and 
Patil et al. (2014).

Tilletia sp. are important pathogens of wheat and 
are transmitted by seed. Therefore, the effect of 
plasma treatment on spores of T. caries was tested. 
Due to the standard conditions for all treatments, 
the wheat seed was artificially infected in this mod-
el experiment. Artificial seed infection and evalua-
tion of germination of Tilletia spores were carried 
out on the recommendation of Dr. Dumalasová 
(Crop Research Institute, Czech Republic) and ac-
cording to protocols of Dumalasová & Bartoš 
(2008) and Prokinová et  al. (2011). The germina-
tion of the spores was carried out on an antibiotic 
medium (ampicillin and streptomycin) at a  tem-
perature of 7 °C when the spores germinated more 
slowly. Still, there is no germination or contamina-
tion by other fungi on the spores. Thanks to this, 
we could simplify the procedure and eliminate the 
disinfection of the spores. These conditions have 
been optimised for the evaluation of germination 
spores of T. caries; in the case of testing the effect 
of plasma on other Tilletia species, species-specif-
ic spore germination requirements must be taken 
into account (Váňová et al. 2006). The experiments' 
results show that the different treatment variants 
(water, calcium nitrate, Terra-Sorb® and their com-
binations with salt) differed significantly. The best 
results of the water variant (addition of only water 
during plasma treatment) could be explained by the 
ability of the plasma to decompose water into ROS 
and H2O2. Both of these products show good dis-
infecting properties. Hydrogen peroxide can react 
in the presence of nitrites and change to peroxyni-
trites (ONOO−), which also have a  disinfectant 
effect (Machala et  al. 2013). The combination of 
nitrogen substances with salt was chosen because 
salt can react under the action of plasma in the 

presence of oxygen radicals to form the disinfect-
ing agent hypochlorite (Jirásek & Lukeš 2019). But 
based on these results, it can be assumed that the 
addition of calcium nitrate solution during plasma 
treatment inhibits or does not allow the conver-
sion of NaCl to hypochlorite because the difference 
between the separate LVTER variant and its salt 
variants is smaller than in TER variants and in LV 
variants even the addition of salt reduces the effi-
ciency of treatment. Weaker results recorded in LV 
variants (only calcium nitrate alone or in combina-
tion with salt) may indicate less than expected pro-
duction of RNS or their lower efficiency on spores 
than ROS. One of the negative effects of RNS on 
phytopathogens is the change in intracellular pH. 
But this phenomenon occurs with more difficulty 
in spores than in vegetative cells (Slonczewski et al. 
2009; Hertwig et al. 2015).

However, the suppression of pathogens on the 
surface of the seeds must not negatively affect 
the viability of the seeds. Therefore, in addition 
to the germination of spores and the positive ef-
fect of the treatment on health, the parameters of 
the seed value were monitored. Germination, seed 
emergence, growth and development of plants were 
monitored in both laboratory/greenhouse and field 
experiments. The results of laboratory and green-
house experiments correspond to positive results 
published by Kordas et al. (2015). It is also appar-
ent that germination depends on the plasma source. 
Meng et al. (2017) tested a DBD plasma source with 
different gases. Compared to the results of this study 
based on the gliding arc source, the DBD plasma 
variants with air and nitrogen had significantly bet-
ter germination than the control variant. However, 
the great statistical proximity of plasma with air and 
nitrogen was confirmed as well in the results of this 
study. The improving effects of wheat growth char-
acteristics in the initial stages were also found in 
DBD plasma-treated seeds with added nitrogen by 
Iranbakhsh et al. (2017). There was also an improve-
ment in germination rate, germination percentage 
and height of young wheat plants in experiments 
with nitrogen plasma jet (Lotfy et al. 2019). In the 
presented study positive effect of added nitrogenous 
substances during the treatment on the germination 
process was verified. In the laboratory paper germi-
nation test, where germination was not affected by 
the intake of nitrogenous substances from the envi-
ronment, all nitrogenous variants expressed better 
germination, similar to results reported by Meng 
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et al. (2017) and Lotfy et al. (2019). There was also 
a slight statistical difference in the germination rate. 
In emergence tests in the greenhouse and field con-
ditions, the effect of added nitrogenous substances 
disappeared, probably due to the influence of the 
environment, as reported in cereals by Strejckova 
et al. (2018). The results differ from the conclusions 
of work with planar plasma sources (Mitra et  al. 
2014; Zahoranová et al. 2016), where demonstrably 
improved germination and growth characteristics 
in the initial stages were reported.

The most significant part of the results relates 
to field experiments. Treatment with cold plasma 
variants used in this study does not adversely af-
fect seed germination, further plant development 
or yield and grain quality. In the field experiments, 
no statistically significant differences were ob-
served between the treatment variants, except for 
the protein content in water and calcium nitrate 
variants, as described in the result chapter. Also, 
Saberi et al. (2018) reported statistically significant 
improving effects of RF plasma on wheat on vegeta-
tion parameters, including protein content but also 
yield and TGW. As in this experiment, a slight but 
statistically insignificant yield increase was also re-
ported in the study of Jiafeng et al. (2014) in wheat 
and Strejckova et al. (2018) in barley using a gliding 
arc plasma source.

CONCLUSION

The method of adding some chemical substanc-
es to the process of gliding arc plasma treatment 
by spraying in the form of aqueous solutions was 
verified in this study. The method is suitable for 
delivering substances, increasing air humidity 
and decreasing temperature in the area of plasma 
treatment. The supplied separate nitrogenous 
substances did not significantly statistically affect 
either the hygienic aspect or the growth proper-
ties except for the germination rate on paper in 
laboratory tests. In contrast, the addition of wa-
ter showed a  demonstrable effect on the effec-
tiveness of the plasma treatment. It significantly 
reduced the germination of T. caries spores while 
maintaining the good growth properties of wheat. 
The importance of adding NaCl to nitrogenous 
solutions and adding aqueous salt solution at the 
end of the treatment was also verified. Both of 
these possibilities of combining salt with Terra- 

Sorb® and with a  mixture of Ca(NO3)2 plus 
Terra-Sorb® resulted in a  significant reduction 
in the germination of Tilletia spores. For these 
reasons, the addition of NaCl to the variants with 
Terra-Sorb®, Ca (NO3)2 plus Terra-Sorb® and 
the addition of water appear to be the most ef-
fective treatments and can significantly improve 
the plasma treatment of seeds. Further research 
will focus on testing cold plasma’s effect on other 
Tilletia species. Particular attention will be paid 
to the scale-up of this treatment technology, op-
timisation of the financial cost of the treatment 
and the use of plasma technology in seed pro-
cessing as an alternative to the chemical treat-
ment of seeds.
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