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In a  historical perspective, the strong economic 
and security pressures have been instrumental in 
the development of chemical crop protection. To-
day, however, the supply role is enhanced by the 
growing need for sustainable production methods 
(Pretty 2008). A potential solution is to make more 
efficient use of the available chemical inputs in pre-
cision agriculture (Gebbers & Adamchuk 2010). 
The current refinement of applications includes the 
use of aerial and satellite photography for spectral 
reflection-based weed detection, as well as precise 
navigation systems for the implementation of out-
put application maps (López-Granados 2011). The 
emerging phenomenon of machine learning driven 
object detection can potentially achieve a  high-
er success rate, while being able to detect earlier 
growth stages of weeds. The core of the technol-
ogy lies in the use of convolutional layers, which, 
though analysis of pixel-based shapes, detect pre-
trained objects (O’Mahony et al. 2020). 

The initial decade of machine learning driven 
weed detection development offered the first com-
mercially applied projects (Gerhards et  al. 2002). 
Broader success in the implementation of the tech-
nology followed the publication by Dyrmann et al. 
(2016) who produced a model with an identification 
accuracy of 86.2%, while being able to successful-
ly distinguish between 22 species of weeds. In the 
following years the discipline split into two major 
groups, focusing on either land-based or aerial plat-
forms. Liakos et al. (2018) highlighted the aerial ap-
proach that excelled in large scale data collection, 
which was counterbalanced by the higher precision 
and detail of the land-based platforms (Wang et al. 
2019). The use of multispectral, or hyperspectral 
images allowed for an increase in the model ac-
curacy in terms of the identification of plants from 
the surrounding environment (Potena et  al. 2017; 
Fawakherji et  al. 2021), it also paved the way for 
the broader inclusion of alternative detection ap-
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proaches based on both the shape and the spectral 
reflection of the plants (Farooq et al. 2019). The latest 
models generally have an output accuracy near the 
95 % benchmark, such as in the case of Farooq et al. 
(2019), Alam et al. (2020) or Junior and Ulson (2021).

The main objective of the paper is the development 
and evaluation of an analytical tool capable of de-
tecting weeds under field conditions based on near-
infrared visual data. The core of the analysis consists 
of a  subgoals, including the collection of suitable 
data and the subsequent building and training of 
a  machine learning algorithm, which is to be later 
compared with a  state-of-the-art computer vision 
tool the You Only Look Once (version 3) (YOLOv3) 
model by Redmon and Farhadi (2018), trained on 
identical data. 

MATERIAL AND METHODS

The cornerstone of the analysis is the acquisition 
of a  relevant and sufficiently large dataset. In this 
case, the near-infrared (NIR) spectral plane was 
chosen, the selection of which was primarily mo-
tivated by the ease of any background elimination 
as well as the price of the device. Conceptually, the 

analysis worked with a  ground-based platform, al-
lowing for the higher resolution imaging of target 
objects due to their close proximity (Wang et  al. 
2019). The majority of the images were taken at the 
experimental plots of the Czech University of Life 
Sciences in Prague, during April and May 2021 to 
fit the growth phase ranging between the first and 
the fifth true leaf. In total, 18 species of weeds were 
included in the dataset (Table 1 and Table 2) includ-
ing a single instance of a monocot species. The weed 
species were selected by their relevance to the local 
production of Zea mays, being the single crop in the 
dataset. The taxonomic nomenclature of the plants 
follows Kaplan et al. (2019).

The imaging itself was carried out using a modi-
fied Panasonic G5 camera, which underwent the 
removal of the internal IR-blocking filter and replac-
ing it with an external Hoya R72 filter that blocks 
visible radiation up to a wavelength of 720 nanome-
tres. The camera was equipped with a Panasonic G 
Vario 14–45 mm f/3.5–5.6 lens. Data collection was 
carried out in the form of images taken from a dis-
tance of 50 cm perpendicular to the soil surface at 
a lens focal length of 45 mm. 

During the manual selection of the collected data, 
out-of-focus and otherwise poor-quality images 

Weed species No. of samples Succesful  
classification (%)

Type I error  
(%)

Type II error  
(%)

Missidentification 
(%)

Amaranthus retroflexus 170 98.3 1.7
Capsella bursa-pastoris 250 97.5 2.5
Chenopodium album 440 98.9 1.1
Echinochloa crus-galli 231 89.6 10.4
Fumaria officinalis 133 84.9 6.0 9.1
Galium aparine 420 98.6 1.4
Galinsoga parviflora 260 97.4 2.6
Lamium amplexicaule 480 99.2 0.8
Tripleurospermum inodorum 130 80.8 3.8 7.7 7.7
Mercurialis annua 260 97.4 2.6
Papaver rhoeas 200 97.5 2.5
Polygonum aviculare 134 98.5 1.5
Fallopia convolvulus 360 98.8 1.2
Stellaria media 385 98.7 1.3
Thlaspi arvense 145 65.2 8.7 8.7 17.4
Veronica persica 154 97.4 2.6
Viola arvensis 417 98.8 1.2
Persicaria maculosa 286 97.9 2.1
Zea mays 265 100.0

Table 1. The overview of species and the number of samples with identification success and error rates per weed spe-
cies in custom model
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were eliminated. Annotation of the objects was per-
formed using the "open source" computer software 
VIA from the Visual Geometry group (Figure 1). 
The individual annotations were formatted into 
a  JavaScript Object Notation (JSON) or alterna-
tively YOLO file, designated for each model. 

The multiplication of the total number of images 
was undertaken through the axis rotation dupli-
cation method, where randomly selected images 
were adjusted by rotating them by ninety degrees 
(Farooq et al. 2019). The partitioning of the dataset 
into training, evaluation and test parts was orient-
ed towards the dominance of the training set, thus 
maximising the identification success rate (Miik-
kulainen et al. 2019). Therefore, 70% of the anno-
tated images were randomly selected and assigned 
for training, 10% for the model evaluation, and the 
remaining 20% of the annotated images were used 
for testing the detection accuracy. 

Individual convolutional layers in the architec-
ture were complemented by output maximisation 
layers (Maxpool), whose output data contain only 
the highest value of the input parameters being 
monitored (Dyrmann et  al. 2016). To effectively 
keep the range of inputs to each layer constant while 
avoiding the effect of the previous output updates, 

Table 2. The overview of species and the number of samples with identification success and error rates per weed spe-
cies in You only look once (version 3) model

Weed species No.  
of samples

Succesful  
classification (%)

Type I error  
(%)

Type II error  
(%)

Missidentification 
(%)

Amaranthus retroflexus 170 98.9 1.1
Capsella bursa-pastoris 250 97.2 2.8
Chenopodium album 440 99.2 0.8
Echinochloa crus-galli 231 98.2 1.8
Fumaria officinalis 133 97.1 1.5 1.5
Galium aparine 420 98.6 0.7 0.7
Galinsoga parviflora 260 98.4 1.6
Lamium amplexicaule 480 99.0 1.0
Tripleurospermum inodorum 130 97.7 0.5 1.8
Mercurialis annua 260 98.4 0.8 0.8
Papaver rhoeas 200 95.2 1.6 3.2
Polygonum aviculare 134 97.8 1.1 1.1
Fallopia convolvulus 360 99.5 0.5
Stellaria media 385 98.7 1.3
Thlaspi arvense 145 92.3 1.5 6.2
Veronica persica 154 98.2 0.9 0.9
Viola arvensis 417 98.5 1.5
Persicaria maculosa 286 97.6 2.4
Zea mays 265 100.0

Figure 1. Example of annotated image of Chenopodium 
album



295

Original Paper	 Plant Protection Science, 59, 2023 (3): 292–297

https://doi.org/10.17221/131/2022-PPS

the model contained batch normalisation layers 
(Ioffe & Szegedy 2015). The global averaging (Glob-
al Average pool) served the model to average the 
output data from the previous segment and direct 
it to the pair of output layers (Figure 2). A final pair 
of "matrix-vector multiplication" layers completed 
the work of the previous neurons by assigning the 
data outputs to the corresponding category vectors. 

The output results of the testing on 1 024 im-
ages containing 5 120 objects were subject to 
a  statistical analysis based on the conflict or cor-
respondence of the outputs with the annotations. 
While the core element of the identification suc-
cess rate was the percentage of the correctly iden-
tified objects from the total plant objects present 
in the images consisting of the two primary fac-
tors (detection and classification), the unsuccess-
ful elements included type I (false detection) and 
type  II (non-detection of the object) errors as well 
as the misidentification of the classes (Table 1 
and Table 2). 

RESULTS 

Custom model. The training achieved an identifi-
cation success rate of 94.96% at epoch 150, which was 
subsequently verified to 94.5% by testing on the rest 
of the prepared data. Overall, the training develop-
ment was able to obtain a relatively high object iden-
tification accuracy on the data. However, in terms of 
the performance, the actual model was slightly slower 
than expected, taking 28 ms to process an image.

From the individual species, Lamium amplexi-
caule was correctly detected in 99.2% of the cases. 
Chenopodium album came in second at 98.9% and, 
in a close third place, Fallopia convolvulus was de-
tected in 98.8% of the cases. At the other end of the 
rankings, Thlaspi arvense dominated the error rate, 
with the model being correct only 65.2% of the time. 
The case of Echinochloa crus-galli was also responsi-
ble for a rather specific result within the model. On 
the one hand, the model managed to detect individ-
uals quite accurately with an identification success 
rate of 89%, but, on the other hand, the species was 
responsible for virtually all the cases of the type I er-
ror in both the evaluation and test datasets due to 
it being mistakenly detected in the examples of the 
post-harvest residue. The identification accuracy 
and identification errors for all the weed species are 
listed in Table 1.

YOLOv3. In the case of the YOLOv3 model, 
a range of 150 training epochs was set for the train-
ing in parallel to the custom model. The identification 
success rate of the last training epoch of the model 
was equal to 98.45%. The final identification accura-
cy level was validated on the test dataset, where the 
model reached a  97.92% identification success rate 
(Table 2). During the testing process, similar to the 

 
Figure 2. Architecture of the custom neural network
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custom model, type I error cases occurred, but the 
proportion of occurrences was lower. In terms of the 
speed, the YOLOv3 model performed very well in-
deed, achieving a process time of 22.8 ms per frame.

Images containing F. convolvulus were the most ac-
curately detected in the model, with an average iden-
tification success rate of over 99.5%. The model also 
noticeably exceeded the 99% identification success 
rate threshold for the Ch. album images. Most of the 
remaining classes had between 98% and 99% an iden-
tification success rate, with the only exception being 
the combination of Papaver rhoeas and T. arvense. 
For both species, there was the relatively frequent 
confusion and misidentification in the test dataset, 
resulting in the overall identification success rates for 
both species being below 90% (Table 2). In addition 
to the occurrence of type I and type II errors, spe-
cies confusion occurred in the test dataset when the 
model assigned an object to the wrong class, which, 
despite the smaller number of cases, highlights the 
limitations of the training dataset. 

DISCUSSION

The primary goal of training the YOLOv3 
model on the identical data was to validate the 
applicability of the gathered data for the weed 
detection. A  second and complementary goal 
served to validate the performance of the cus-
tom model in competition with a  contempo-
rary model in practical use. The basic compa-
rable benchmark of both models remains their 
architecture and scope. The initial element 
that comes directly from the architecture is the 
speed in the data processing, where YOLOv3 
clearly wins, as it is the top contemporary mod-
el in terms of speed. When comparing 22.7 ms 
with the 28 ms of the actual model, the result is 
quite clear, but in the overall context, a difference 
of 5 ms can be considered as a relative success. 

Despite the fact that, in absolute terms, the re-
sulting difference of 3.32% is not staggering, in 
terms of the identification accuracy of the machine 
learning outputs, it is quite a significant difference 
(Wang et  al. 2019). In practical terms, 95% can 
be considered as a  crucial threshold of accuracy 
(Nawara 2010), which unfortunately was not sur-
passed by the custom model. The YOLOv3 model, 
on the other hand, reached the desired threshold 
with a relatively large margin. Overall, however, al-

ready exceeding the 90% identification success rate 
threshold can be considered an achievement due to 
the demonstration of the stability of the model for 
further development and improvement.

A relatively specific element of the comparison is 
the segmentation of the classification success rate 
in terms of the classes of the observed objects. Al-
though the exact reason for the different results for 
the individual elements of the dataset is very diffi-
cult to trace, it is possible to argue that, within the 
analysis, it primarily occurs by the differences in 
the used filters. The similarity when F. convolvulus 
and T. arvense formed practical counterparts in the 
identification success rate in both models can be ex-
plained by two reasons: The first is the disparity in 
the volume of the training data, with individuals of 
T. arvense forming a minority. Secondly, the general 
suitability of the shape features of both species can 
be questioned. There are clearly more or less suit-
able shapes for the identification by machine vision 
techniques (Dyrmann et  al. 2016). The pixel-scale 
detection of some species performed better with the 
smaller filters used in YOLOv3, while, for others, 
the combination of the larger filters of the custom 
model was a better fit. In addition to the pixel-scale 
detection, the size of the filters of the custom model 
could limit its use in highly weed-infested fields due 
to the overlay of multiple objects and the resulting 
detection of the one on top.

While the current iteration of the model could 
not be widely applied due to its relatively weak 
dataset base, the potential scaling of the technol-
ogy by both means of the price and data gathering 
suggest a  potential for practical use. With the re-
straints on the gathered data, the model can only be 
used in the predefined environment, but, given ad-
ditional training, it might potentially work even in 
narrow-row cultivated crops. Generally, the model 
has the potential to be implemented in the form of 
autonomous robotic weeding platforms and a ret-
rofitted sensing platform for the target control of 
conventionally used sprayers. 

CONCLUSION

In spite of the number of problematic factors, it is 
possible to conclusively confirm the practical success 
of the primary objective. The results were used to ver-
ify the applicability of the infrared spectrum dataset 
for weed detection, as well as to verify the capabilities 
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of the custom model in direct comparison with the 
YOLOv3 architecture. Despite a relatively promising 
level of identification accuracy, the algorithm remains 
limited by the scope of the data, which decides the 
reliability of the model. To successfully incorporate 
the technology into the reality of the agrarian sphere, 
the model would need to include more weed species 
and a larger source of visual data. 
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