A novel eggplant AP2/ERF transcription factor *StPti5* confers resistance to Verticillium wilt across different species

Nanyang Li¹, Yinping Niu¹, Xing Wang¹, Suna Wang¹, Yuhui Chen²*, Liping Wang¹*

¹Laboratory of Plant Disease, Hebei University of Engineering, Han Dan, China

*Corresponding authors: chenyuhui@caas.cn; wlp20232023@163.com

Citation: Li N., Niu Y., Wang X., Wang S., Chen Y., Wang L. (2023): A novel eggplant AP2/ERF transcription factor *StPti5* confers resistance to Verticillium wilt across different species. Plant Protect. Sci., 59: 325–336.

Abstract The APETALA 2/ethylene response factors (AP2/ERFs) are considered essential in plant disease resistance responses. In this study, a novel eggplant AP2/ERF transcription factor gene, *StPti5*, was identified and functionally described from wild eggplant (*Solanum torvum* Sw.). The results of bioinformatics analysis show that *StPti5* protein contains a DNA-binding AP2/ERF domain and shares high degree of amino acid similarity with the other known AP2/ERF domain. Subcellular localization assay shows that *StPti5* protein was localized in the nucleus. Expression of *StPti5* was induced by infection with *Verticillium dahliae*, ethylene, and methyl jasmonate. Analysis of expression patterns suggests that the function of *StPti5* in resistance to Verticillium wilt was most closely linked to ethylene signaling. Overexpression of *StPti5* in *Arabidopsis thaliana* could improve disease resistance to *V. dahliae* and activate genes linked to the ethylene signaling pathway. Studies on the *A. thaliana* defence response revealed that the formation of reactive oxygen species (ROS) increased considerably following overexpression of *StPti5*. In summary, our analysis suggest that *StPti5* gene is a functional gene that could improve eggplant's resistance to *V. dahliae*.

Keywords: Solanum torvum; ERF transcription factors; Verticillium dahliae; disease resistance; ethylene signaling

Eggplant (*Solanum melongena* L.) is one of the most significant vegetable crops worldwide, and China has the largest eggplant production area. In 2014, the cultivation area of eggplant in China was 800 000 ha, with a total production of 29.5 million t, accounting for 60% of world production (Yang et al. 2019). However, several diseases seriously affect eggplant yield and fruit quality, one of which is eggplant Verticillium wilt caused by the fungal pathogen *Verticillium dahliae* and brings about economic losses

worldwide. Verticillium wilt is a vascular disease that can result in yellow discolouration or defoliation and, eventually death of plants (Fradin & Thomma 2006; Wally & Punja 2010).

Traditional control methods such as chemical and biological control cannot effectively control the disease for eggplant Verticillium wilt. The lack of resistant cultivars to this pathogen in eggplant limits the progress of genetic breeding for disease resistance. *Solanum torvum* Sw., also known as tur-

²Laboratory of Eggplant Disease, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China

Supported by the Natural Science Foundation of Hebei (C2019402343) and Science and Technology Research Project of Colleges and Universities of Hebei (QN2020206).

[©] The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

key berry, is a wild eggplant relative frequently used as a rootstock for protected cultivation (Yamaguchi et al. 2010). *S. torvum* is resistant to Verticillium wilt (Bletsos et al. 2003), which is essential to discovering disease resistance genes in improving eggplant Verticillium wilt disease resistance.

Plant transcription factors (TFs) play critical roles in plant growth, development, and response to various biotic and abiotic stresses (Rashid et al. 2012; Shu et al. 2016). The AP2/ERF superfamily is one of the largest groups of TFs in plants (Nakano et al. 2006), which contains one or two AP2 domains with 60-70 conserved amino acid residues. These amino acid residues are all made up of a three-stranded anti-parallel beta-sheet and an alpha helix. Previously, through the analysis of suppression subtractive hybridization (SSH) libraries, we have isolated genes in a S. torvum, that were responsive to V. dahliae infection. Among the sequences identified, we found a cDNA fragment representing the transcriptional activator PTI5 gene of pathogenesis-related genes (designated StPti5) significantly increased in response to V. dahliae infection. The protein encoded by PTI5 is a typical plant transcription factor in tomatoes, which belongs to Ethylene responsive element binding factor (ERF) (He et al. 2001; Wu et al. 2015). ERFs, a major subfamily of the AP2/ ERF transcription factor superfamily, specifically bind to the promoter of genes with a GCC frame and then induce the expression of downstream genes (Ohme-Takagi & Shinshi 1995). The AP2/ ERF family has important roles in plant response to abiotic and biotic stresses (Gilmour et al. 2000; Sharabi-Schwager et al. 2009; Zhao et al. 2012; Mishra et al. 2015; Chen et al. 2022). Ethylene signal activates the expression of many pathogenesis-related (PR) proteins and other genes that facilitate defence responses (Eyal et al. 1993). Overexpression of ERF genes in A. thaliana, wheat, cotton, tomato can induce the expression of pathogenesis-related genes (PRs), enhance reactive oxygen species (ROS) scavenging capacity and increase the resistance of plants to fungi, bacteria and viruses (He et al. 2001; Pré et al. 2008; Meng et al. 2013; Guo et al. 2016; Hawku et al. 2021; Zhu et al. 2021). The AP2/ERF, transcription factor superfamily also participates in several hormone signaling pathways, such as the ethylene, jasmonic acid, and salicylic acid pathways (Fujimoto et al. 2000; Mantiri et al. 2008).

Although many investigations have shown that AP2/ERF transcription factors played important roles in plant pathogen defence, only a few genes have been found in eggplant (Shen et al. 2022). To explore the potential role of StPti5 gene in plant resistance to Verticillium wilt, the gene (named St-Pti5) was cloned and characterized from S. torvum. The putative StPti5 protein contains a DNA-binding AP2/ERF domain and shares a high degree of amino acid similarity with the other known AP2/ ERF domain. Subcellular localization assay shows that *StPti5* protein was localized in the nucleus. The expression of the StPti5 gene was induced when subjected to infection by V. dahliae and treatment with disease-related hormones. We then heterologously expressed StPti5 in Arabidopsis and found that the transgenic Arabidopsis plants exhibited increased resistance to V. dahliae. We found a significant increase in reactive oxygen species (ROS) levels, and genes related to the ethylene signaling pathway and pathogenesis-related genes were induced during V. dahliae infection. This study will contribute to understanding the functions of StPti5 and the regulation of defence responses against V. dahliae infection.

MATERIAL AND METHODS

Plant materials and inoculation method. The highly resistant eggplant species (*S. torvum* SW.) and *A. thaliana* seeds were sprouted on a wet cloth, and the seedling plants were transplanted into substrate cultures in a greenhouse. The eggplant and *A. thaliana* were cultured at 25 °C and 22 °C, respectively with a light/dark cycle of 16/8 h.

A *V. dahliae* strain was identified from the diseased plants in the field and identified with pathogenicity. The pathogenic fungus was placed on potato dextrose agar (PDA) plates and incubated at 25 °C for 14 days to collect spores. The infection tests of wild eggplant and *A. thaliana* with *V. dahliae* were conducted using a root-dip method. (Yang et al. 2013). The steps were as follows: the seedlings were uprooted, and the roots were submerged in a conidial suspension of *V. dahliae* (5 mL per seedling) for 2 minutes. The roots of non-inoculated plants were treated with sterile water for 2 minutes. Subsequent to this, the seedlings were placed back into potting soil. No additional procedures were carried out to wound the roots throughout the process.

Isolation of full-length cDNA. An SSH library of the resistant wild eggplant species S. torvum was constructed. A differentially expressed transcript was isolated, representing the ethylene response factor Pti5 gene. To clone StPti5, root samples were collected at 6 h after inoculating 4-week-old S. tor*vum* seedlings with 5 mL of 5×10^6 conidia mL conidial suspension. The EasyPure® Plant RNA Kit (TransGen Biotech, China) was used to extract total RNA, and then cDNA was synthesized with the One-Step cDNA Removal and cDNA Synthesis SuperMix (TransGen Biotech, China). The primers for middle segments were designed [Electronic Supplementary Material (ESM) Table S1] based on the EST sequences, and the full-length sequence was obtained using the RACE method, following the manufacturer's instructions (Clontech).

Bioinformatic and phylogenetic The BLAST tool (http://www.ncbi.nlm.nih.gov/ BLAST/) was used for sequence identities and homology analysis. The domain sequence of StPti5 was analyzed using a conserved-domain search tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/ wrpsb.cgi). The analysis was conducted on the physical and chemical properties of the predicted protein by using the Protparam tool (https://web. expasy.org/protparam/), and the secondary structure was predicted by Predictprotein (https://predictprotein.org/). Gene localization was predicted using the WoLF PSORT II tool (https://www.genscript.com/wolf-psort.html?src=leftbar). Phylogenetic analysis of the StPti5 was carried out using MEGA software (version 5.0).

Gene expression analysis. To analyze the expression of StPti5 in eggplant, 4-week-old S. torvum seedlings were inoculated with 5 mL of conidial suspension (5 \times 10⁶ conidia/mL) of *V. dahliae* using a root-dip method (Yang et al. 2013). Samples were collected from inoculated roots at six different time points (0, 2, 6, 12, 24, 48, and 72 hours post-inoculation) from three seedlings for each time point to analyze the expression of *StPti5*. To analyze the expression of *StPti5* in hormone-treated eggplant, S. torvum leaves were sprayed with 10 Mm salicylic acid (SA), 5 Mm ethephon (ETH) and 0.1 Mm methyl jasmonate (MeJA). Then, leaves of hormonetreated plants were collected at different time intervals, including 2, 6, 12, 24, 48 and 72 h after spraying. The plants sprayed with sterile water were used as the control. For the expression analysis of ethylene signaling pathway-related genes and pathogen defence genes in transgenic *A. thaliana*, the roots of four-week-old *StPti5*-overexpression transgenic line (OE1) and wild-type (Col-0) *A. thaliana* were immersed in a suspension of *V. dahliae* spores $(1 \times 10^7 \text{ conidia/mL})$ for 5 minutes, while a sterile water treatment was used as a control. The treated seedlings were then replanted into nutrient bowls.

Three root samples were collected per treatment 24 hours after inoculation. qRT-PCR test steps were performed using a QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The eggplant *ubiquitin* gene was used as an internal control. The gene expression data represent the mean value obtained from three independent replicates. The relative expression of target genes was calculated using the $2^{-\Delta\Delta Ct}$ method (Livak & Schmittgen 2001).

Subcellular localization analysis of StPti5. The full-length coding region of StPti5 was inserted into the pRTL2 vector to create a C-terminal fusion with the GFP gene. This construct was placed under the control of the CaMV35S promoter and designated as p35S:StPti5 to investigate the subcellular localization of StPti5. The plasmid construct was confirmed by sequencing. The plasmids harboring GFP alone (empty vector, p35S:GFP) were used as controls. Both p35S:GFP and p35S:StPti5 vectors were transiently expressed in tobacco epidermal cells through Agrobacterium infiltration. The subcellular localization of the p35S:GFP and p35S:StPti5 fusion proteins was observed using laser scanning confocal microscopy (LSMT-PMT) with an excitation wavelength of 488 nm and an emission wavelength of 510 nm.

Generation and analysis of transgenic A. thaliana. The full-length coding sequence of StPti5 was amplified using primers containing specific (Sac I and BstB I) enzyme sites and was inserted into the vector pFAST-G02 to construct the vector CaMV35S:StPti5 for overexpression. After the overexpressing plasmid (pFAST-G02:StPti5) was constructed, it was transformed into A. tumefaciens (strain GV3101). The transformed A. tumefaciens was subsequently used to introduce the overexpressing plasmid into 4-week-old A. thaliana ecotype Col-0 plants through the floral dip method (Clough & Bent 1998). The transgenic A. thaliana plants were selected by growing them on an MS medium containing 50 mg/L Basta. The T3 homozygous transgenic plants were then identified using RT-PCR with cDNA samples, and wild-type

A. thaliana cDNA was used as a control. For PCR amplification, the following conditions were used: an initial denaturation step at 94 °C for 5 minutes, followed by 35 cycles of denaturation at 94 °C for 30 seconds, annealing at 55 °C for 30 seconds, and extension at 72 °C for 30 seconds. The control used for this PCR amplification was ubiquitin. For the Verticillium wilt resistance of transgenic plants, 3-week-old seedlings of wild type and transgenic A. thaliana were subjected to inoculation with 5 mL of conidial suspension $(1 \times 10^7 \text{ conidia/mL})$ of V. dahliae using the root-dip method, respectively. Plants treated with sterile water were used as the control. For quantifying the fungal biomass, the aboveground parts of three inoculated A. thaliana plants per gene target (one per replicate) were reaped 21 days post-inoculation, as described by Santhanam et al. (2013). Following DNA extraction, the biomass was quantified using qPCR with primers explicitly designed for V. dahliae elongation factor $1-\alpha$ (EF- 1α). A. thaliana ubiquitin extension protein 1 (UBQ1, NM_115119.4) was used as an internal reference standard (ESM Table S1).

Detecting ROS accumulation using DAB staining. After infiltration with 50 μ L *V. dahliae* conidia suspension (1 × 10⁷ conidia/mL), transgenic *A. thaliana* and wild-type (Col-0) leaves from 3-week-old plants were used to detect the generation of ROS using 3'3-diaminobenzidine (DAB) solution (Li et al. 2018). The sterile water treatment served as the

control. The detection process involved putting the leaves into the DAB solution and infiltrating them under a gentle vacuum. The reaction was incubated at $25~^{\circ}$ C in the dark and terminated at 10-12h postinoculation. To remove chlorophyll, the DAB solution was removed with distilled water and replaced with ethanol (75%). The decolourized leaves were then placed in 30% glycerol.

RESULTS

Cloning and sequence analysis of the StPti5 gene from S. torvum. An SSH cDNA library of roots from S. torvum was generated after inoculation with V. dahliae. A cDNA fragment showed increased expression of an ethylene response factor (designated as StPti5) in wild eggplant during infection. By using the RACE method, the full-length StPti5 gene was obtained. The gene was found to contain a 537-bp open reading frame (ORF), which is predicted to encode 178 amino acids. (MK248476.1, Figure 1A). The predicted protein weight is 19.43 kD, and the protein theoretical PI is 7.85. It is predicted that StPti5 does not contain signal peptide and is located in other parts of the cell except mitochondria and chloroplasts. The deduced StPti5 protein sequence contained a 58 amino acid (59-116) AP2/ ERF DNA binding domain that shared high amino acid homology with the other AP2/ERF conserved

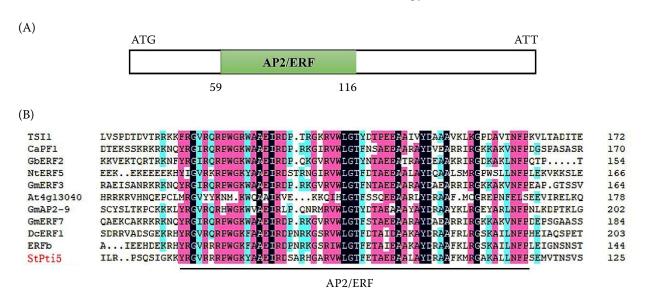


Figure 1. StPti5 encodes an AP2/ERF protein

- (A) Domains predicted for StPti5. The numbers represent the amino acid positions of the domain
- (B) Multiple sequence alignment of *StPti5*'s AP2/ERF domain with other plant AP2/ERF proteins; the conserved amino acids are highlighted in blue and pink backgrounds, respectively, and the AP2/ERF domain is indicated

domain (Figure 1B). The Neighbour-joining phylogenetic tree revealed that *StPti5* showed a closer evolutionary relationship (59.23%) to NtERF5 in *Nicotiana tabacum* (Figure 2).

The expression pattern of StPti5 induced by V. dahliae, ET, MeJA, and SA. To confirm StPti5 up-regulated expression in response to pathogen inoculation, we used qRT-PCR to compare StPti5 expression in resistant eggplant S. torvum after V. dahliae inoculation to that in distilled water treatment controls. The relative expression of St-Pti5 showed two up-regulation peaks at 6 and 24 h post-inoculation, respectively. Among them, the expression at 24 h post-inoculation was the highest, which was 10.34 folds over the control (Figure 3A). The expression pattern of StPti5 was also up-regulated by spraying ETH and MeJA in leaves. After treatment with ETH, the expression pattern of StPti5 was similar to treatment with V. dahliae (Figure 3B). On the contrary, treatment with MeJA resulted in a rapid increase in expression, which peaked 12 h after inoculation and then decreased to a level similar to that of mock-inoculated plants (Figure 3C). Treatment with SA had a less significant effect on *StPti5* expression than treatments with ETH and MeJA (Figure 3D).

StPti5 is localized to the nucleus. Subcellular localization analysis of the StPti5 peptide sequence using WoLF PSORT II indicated that StPti5 has no distinct signal peptide or any transmembrane structure, and its subcellular localization was most likely in the nucleus. (kNN value: nuclear, 6; nuclear plasma, 5.5; plasma membrane, 3; cytoskeleton, 2; cytoplasm, 1; mitochondrion, 1). To test the subcellular location of StPti5, the localization of a StPti5-GFP fusion protein was assessed by transient expression in tobacco. As predicted, the target protein p35S:StPti5 was obviously localized in cell nuclei; however, the control p35S:GFP protein was found throughout the foliar cells in tobacco (Figure 4), implying that the protein of StPti5 was localized in the nucleus.

Heterologous overexpression of *StPti5* enhanced Verticillium wilt resistance in *A. thaliana*. To determine the function of *StPti5* in the defence against *V. dahliae*, we transferred the *St-Pti5* gene into the *A. thaliana* genome. The CaM-V35S promoter (P35S:*StPti5*) was used to drive

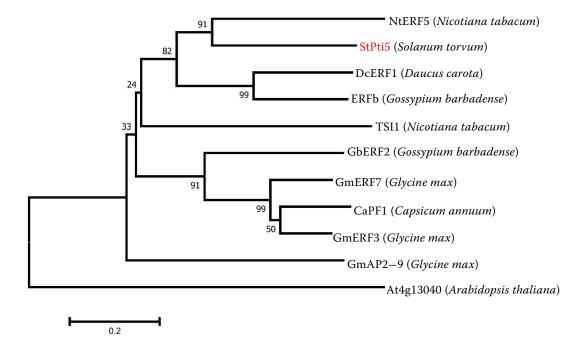


Figure 2. *StPti5* phylogenetic tree with orthologous proteins from other plants MEGA (version 7.0) was used to create the phylogenetic analysis using the bootstrap method based on full amino acid sequences; at each node, the bootstrap values for 1 000 bootstrap trails are displayed; the analysis included the following protein sequences: NtERF5 (AAU81956.1), *StPti5* (QDA34242.1), DcERF1 (BAF75651.1), ERFb (ALK82289.1), TSI1 (AAC14323.1), GbERF2 (AAT77191.1), GmERF7 (NP_001341213.1), CaPF1 (NP_001312013.1), GmERF3 (NP_001238300.2), GmAP2-9 (ACJ37443.1), At4g13040 (Q56XP9.2)

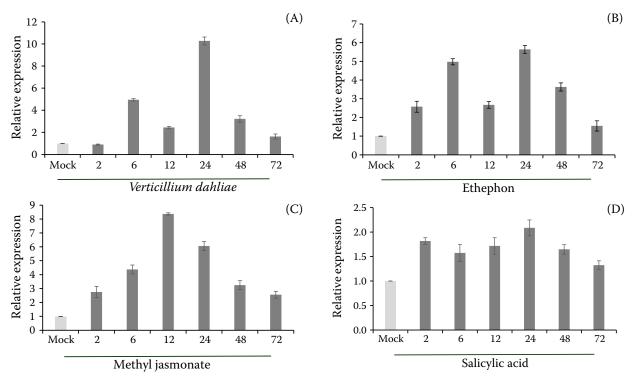


Figure 3. Gene expression patterns of StPti5 in wild eggplant

(A-D) Expression analysis of StPti5 in eggplant at different time points after inoculation with $Verticillium\ dahliae$ or treatment with ethephon (ETH), methyl jasmonate (MeJA) and salicylic acid (SA). The expression levels of StPti5 were determined by qRT-PCR, using the eggplant ubiquitin gene as a control, and compared with the expression of wild eggplant plants treated with sterile water (Mock). All samples were collected at 2, 6, 12, 24, 48 and 72 h. The relative expression levels of the StPti5 gene were represented by the mean of three independent biological replicates for each of the three plants. The error bars represent standard deviations, ** indicating P < 0.01

the overexpression plasmid (pFAST-G02:*StPti5*), which was then transferred into *A. thaliana* ecotype Col-0. Three transgenic lines (OE1-OE3) were chosen for further analysis. The *StPti5* transcript was detected in the three transgenic lines

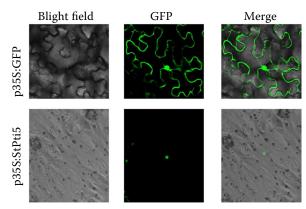


Figure 4. Subcellular localization of *StPti5* A p35S:*StPti5* containing the full-length coding sequence of *StPti5* was inserted into the pRTL2 vector and introduced into tobacco by *Agrobacterium infiltration*; the empty vector p35S:GFP served as a control

but not in the wild-type Col-0 by reverse transcription-PCR (RT-PCR), confirming that the transferred genes were successfully expressed (Figure 5A). For Verticillium wilt resistance tests, the result showed that all three overexpression of lines increased the resistance of *A. thaliana* to *V. dahliae* compared with the WT, as evidenced by reduced leaf chlorosis and withering. (Figure 5B). Furthermore, *StPti5* overexpression lines had significantly less fungal biomass than wild-type plants (Figure 5C). The statistics suggested that the wild eggplant gene *StPti5* conferred resistance to *V. dahliae* in *A. thaliana*.

StPti5-mediated resistance against *V. dahliae* **by an ethylene signaling pathway.** Previous hormone response expression testing results show that the *StPti5* gene in eggplant had similar expression patterns after treatment with *V. dahliae* and *ETH*, suggesting that *StPti5*, which plays a disease-resistance role in *A. thaliana*, may also be associated with ethylene signaling. To assess the correlation, the RT-qPCR method was utilized to measure the

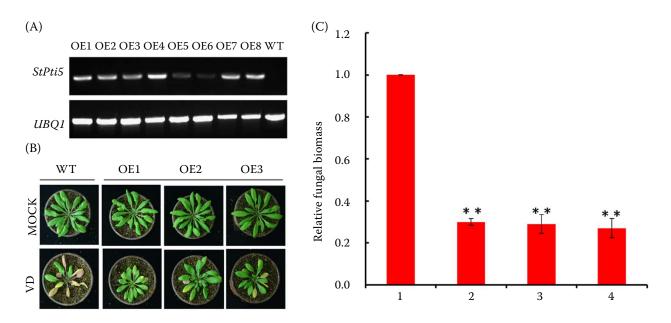


Figure 5. Identify the resistance of StPti5 overexpression lines to Verticillium dahliae

- (A) Amplification of *StPti5* cDNA by RT-PCR in transgenic *Arabidopsis thaliana* lines; the *UBQ1* gene is depicted as an internal reference
- (B) *StPti5* transgenic *A. thaliana* inoculated with *V. dahliae* phenotype analysis; three transgenic lines and wild-type (Col-0) were inoculated with *V. dahliae* or sterile water (Mock), disease symptoms were observed 14 days after inoculation
- (C) $V.\ dahliae$ biomass was quantified in StPti5 transgenic $A.\ thaliana$ plants and compared to wild-type plants (Col-0), genomic DNA extracted from three plants were used to determine relative fungal biomass by quantitative real-time PCR; the data represent the mean \pm SD of the three biological replicates, and statistical significance was determined using an unpaired Student's t-test (** indicates P < 0.01)

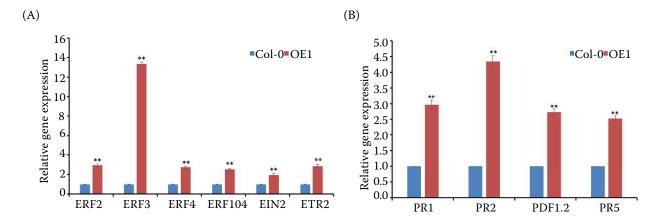


Figure 6. The expression levels of ethylene signaling-associated genes were analyzed in a *StPti5*-overexpression transgenic line using RT-qPCR

(A) Relative expression of ETH signaling pathways; (B) defense marker genes were analyzed in the *StPti5*-overexpression transgenic line by RT-qPCR

For relative expression analysis, root samples of wild type Col-0, transgenic *Arabidopsis thaliana* line OE1 were collected for RNA isolation and cDNA synthesis 24 h after inoculation. Using the comparative threshold $2^{-\Delta\Delta Ct}$ method and *A. thaliana UBQ1* as a reference, the relative expression of ethylene signaling-associated genes was determined through RT-qPCR; the values presented are the averages of three independent biological replicates, and the error bars indicate standard errors Statistical significance was determined using an unpaired Student's t-test (** indicates P < 0.01)

relative expression levels of seven genes, namely ERF2, ERF3, ERF4, ERF13, ERF104, EIN2, and ETR2, involved in the ethylene signaling pathway. The measurement was conducted on both Col-0 and StPti5 transgenic line OE1, 24 hours after being infected with V. dahliae. According to Figure 6A, the expression levels of these genes, except for ERF13, were significantly elevated in the StPti5 transgenic lines compared to the wild-type plants after inoculation with V. dahliae. Moreover, the marker genes PR1, PR4, PDF1.2, and PR5 that ETH induces were considerably up-regulated upon overexpression of *StPti5* in the wild-type Col-0 (Figure 6B). These findings indicate that ethylene signaling plays a critical role in the defence responses mediated by StPti5 against V. dahliae.

The defence response of ROS activation was enhanced by the overexpression of *StPti5*. To investigate the defence responses against *V. dahliae* mediated by *StPti5*, the accumulation of ROS was measured in the leaves of *A. thaliana* wild ecotype Col-0 and *StPti5* transgenic line OE1 at 12 hours post-infiltration with conidia suspension of *V. dahliae*. Compared to infiltration with sterile water, the results showed that wild-type Col-0 leaves exhibited higher levels of ROS accumulation around the infiltration sites, which were visible as dark brown deposits in the leaves (Figure 7). *StPti5* transgenic *A. thaliana* OE1 displayed significantly more ROS accumulation than

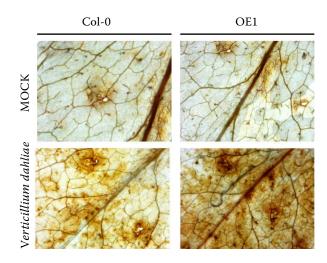


Figure 7. Eggplant *StPti5* regulate ROS accumulation in *Arabidopsis thaliana*

ROS — inducing activities were evaluated in *StPti5* transgenic *A. thaliana* (OE1) and wild-type (Col-0) plants after inoculation with *Verticillium dahliae*, with sterile water treatments serving as controls (Mock)

the wild-type Col-0 plants after being infiltrated with *V. dahliae*. (Figure 7). These findings suggest that *St-Pti5* improves the resistance to *V. dahliae* through *StPti5*-mediated ROS activation.

DISCUSSION

Verticillium wilt, a devastating soil-borne vascular disease caused primarily by V. dahliae, poses a significant threat to eggplant production and significantly reduces yield and quality (Bletsos et al. 2003; Fradin & Thomma 2006). The AP2/ERF transcription factors, one of the largest transcription factor families with one-two well-conserved AP2 domain in a plant, has been shown to play a significant role in both biotic and abiotic stress responses (Pré et al. 2008; Mizoi et al. 2012; Licausi et al. 2013; Shoji et al. 2013; Yang et al. 2019). Studies on eggplant Verticillium wilt resistance have identified a few genes with resistance function against Verticillium wilt (Ali et al. 2022; Yang et al. 2013). However, AP2/ERF resistance genes in eggplant were rarely reported. This study isolated and characterized a novel AP2/ERF transcription factor named StPti5 from the wild eggplant Solanum torvum. Through bioinformatics analysis, we discovered that StPti5 contained a nuclear localization signal (K58YRGVRRRPW) in a basic amino acid domain, indicating its ability to target the nucleus. Subsequently, we conducted a subcellular localization test using tobacco epidermal cells and the p35S:GFP vector and the results showed that StPti5 was localized in the nucleus. Meanwhile, St-Pti5 contained a conserved AP2/ERF DNA binding domain (58 amino acids) that shared high amino acid homology with other conserved domains of the AP2/ERF family (Figure 1B). The most related protein is NtERF5 from Nicotiana tabacum (Fischer & Dröge-Laser 2004). Therefore, StPti5 may function as a transcriptional activator in plants. It has been demonstrated that ET, MeJA, and SA play a significant role as signaling molecules in the defence response of plants (Reymond & Farmer 1998; Liu et al. 2017). Plant defence responses are typically regulated by specific hormones, with SA involved in defending against biological pathogens and JA activating resistance against necrotrophic pathogens (Glazebrook et al. 2003). The ERFs act as a cross factor of ET/SA and ET/JA signaling pathways in response to biotic and abiotic stress-

es. (Yao et al. 2017). The expression patterns of most ERF genes are different by hormone-induced (Mazarei et al. 2007; Gao 2008; Pré et al. 2008). The ERFs genes in tomato, both ET, JA and SA activate Pti4, while Pti5 and Pti6 are activated only by JA and ET (Gu et al. 2000). A similar situation exists in A. thaliana, ERF1 and ERF14 are induced by JA and ET. (Pré et al. 2008), while ERF5 and ERF6 could be induced by ET, JA and SA (Son et al. 2012; Moffat et al. 2012). In this study, the gene expression of StPti5 in S. torvum could be strongly upregulated hormone treatment, including by ETH and MeJA (Figures 3B and 3C). These results suggested StPti5 responds to disease stress via various signaling pathways. Notably, the expression pattern following ETH treatment was comparable to the induction caused by V. dahliae in vivo (Figures 3A and 3B), and StPti5 was significantly up-regulated at 24 h after treatment with ETH, the primary association of StPti5 with Verticillium wilt resistance function was with ET signaling.

Several ERF genes, including those from *A. thali*ana (Oñate-Sanchez et al. 2007; Pré et al. 2008; Moffat et al. 2012), rice (Cao et al. 2006), wheat (Dong et al. 2010), cotton (Zuo et al. 2007; Guo et al. 2016), tomato (He et al. 2001), and tobacco (Guo et al. 2004), have been shown to play important roles in disease resistance. For example, overexpression of OPBP1 in tobacco increases resistance against Phytophthora parasiticavar nicotianae and Pseudomonas syringae pv tabaci pathogens (Guo et al. 2004). However, there have been no reports of ERF genes involved in Verticillium wilt resistance in eggplant. This study aimed to confirm the role of *StPti5* in the resistance to *V. dahliae* by generating A. thaliana lines that overexpress StPti5 and validating their resistance to Verticillium wilt. The results showed that the overexpression lines of A. thaliana exhibited increased resistance to V. dahliae compared with the WT, and there was a significant reduction in fungal biomass in the St-Pti5 overexpression lines (Figures 5B and 5C). The statistics suggested that StPti5 is a positive regulator transcription factor involved in Verticillium wilt resistance in eggplant by participating in complex various signal pathways.

Furthermore, some disease-resistant genes were up-regulated in transgenic *Arabidopsis* lines after infection with *V. dahliae*. The ERF proteins can mediate the defence responses of ethylene signaling activation and pathogenesis-related genes.

For example, overexpression of the soybean ERF transcription factor gene, GmERF5, enhanced resistance to Phytophthora sojae, significant upregulation of the expression of the ethylene synthesis genes and PR genes (Dong et al. 2015). In this study, the ethylene pathway-related genes dramatically up-regulated expression (Figure 6A). For example, the expression of the ERF3 gene in overexpression lines increased by more than ten times. In addition, the pathogenesis-related proteins PR1, PR2, PDF1.2 and PR5 were also significantly expressed after infection (Figure 6B), implying that the ET signaling pathway plays an important role in StPti5-mediated resistance against V. dahliae. Existing research has indicated that transcription factors can both positively and negatively regulate the accumulation of ROS (Wang et al. 2020; Wang et al. 2022). In this study, StPti5 transgenic A. thaliana displayed significantly more ROS accumulation than the wildtype plants after infiltrating with *V. dahliae*. This result suggests that StPti5 enhances plant resistance to V. dahliae by positively regulating ROS accumulation. Although multiple genes and signaling pathways are induced in disease resistance responses, the key genes and pathways that plants inhibit pathogen growth are not clear. The process of plant disease resistance may result from multiple signaling pathways or different signaling pathways for different types of pathogens.

CONCLUSION

In summary, *StPti5* is a novel AP2/ERF transcription factor encoding a protein that is localized in the nucleus. It involves hormones (ETH and MeJA) and Verticillium wilt-induced reaction. Overexpression of *StPti5* gene in *A. thaliana* enhanced resistance to *V. dahliae*, activating genes related to the ethylene signaling pathway and increased ROS production. Our study demonstrated that the *StP-ti5* gene plays a critical role in conferring resistance to Verticillium wilt in eggplant.

REFERENCES

Ali M., Ahmad H., Amin B., Atif M.J., Cheng Z. (2022): Induce defense response of DADS in eggplants during the biotrophic phase of *Verticillium dahliae*. BMC Plant Biology, 22: 1–15.

- Bletsos F., Thanassoulopoulos C., Roupakias D. (2003): Effect of grafting on growth, yield, and Verticillium wilt of eggplant. Hortscience, 38: 183–186.
- Cao Y., Wu Y., Zheng Z., Song F. (2006): Overexpression of the rice EREBP-like gene *OsBIERF3* enhances disease resistance and salt tolerance in transgenic tobacco. Physiological and Molecular Plant Pathology, 67: 202–211.
- Chen K., Tang W., Zhou Y., Chen J., Xu Z., Ma R., Dong Y., Ma Y., et al. (2022): AP2/ERF transcription factor Gm-DREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiology and Bio-Chemistry, 170: 287–295.
- Clough S.J., Bent A.F. (1998): Floral dip: a simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana*. Plant Journal, 16: 735–743.
- Dong L., Cheng Y., Wu J., Cheng Q., Li W., Fan S., Jiang L., Xu Z., et al. (2015): Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to *Phytophthora sojae* in soybean. Journal of Experimental Botany, 66: 2635–2647.
- Dong N., Liu X., Lu Y., Du L.P., Xu H., Liu H., Xin Z., Zhang Z. (2010): Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Functional & Integrative Genomics, 10: 215–226.
- Eyal Y., Meller Y., Lev-Yadun S., Fluhr R. (1993): A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. The Plant Journal, 4: 225–234.
- Fischer U., Dröge-Laser W. (2004): Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus. Molecular Plant-Microbe Interactions, 17: 1162–1171.
- Fradin E.F., Thomma B.P.H.J. (2006): Physiology and molecular aspects of Verticillium wilt diseases caused by *V. dahliae* and *V. albo-atrum*. Molecular Plant Pathology, 7: 71–86.
- Fujimoto S.Y., Ohta M., Usui A., Shinshi, H., Ohme-Takagi M. (2000): Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. The Plant Cell, 12: 393–404.
- Gao S., Zhang H., Tian Y., Li F., Zhang Z., Lu X., Chen X., Huang R. (2008): Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Reports, 27: 1787–1795.
- Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D., Thomashow M.F. (2000): Overexpression of the Arabidopsis CBF3 transcriptional activator mimicsmultiple biochemical changes associated with cold acclimation. Plant Physiology, 124: 1854–1865.

- Glazebrook J., Chen W., Estes B., Chang H-S., Nawrath C., Métraux J-P., Zhu T., Katagiri F. (2003): Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. The Plant Journal, 34: 217–228.
- Gu Y.Q., Yang C., Thara V.K., Zhou J., Martin G.B. (2000): Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the pto kinase. The Plant Cell, 12:771–785.
- Guo W., Jin L., Miao Y., He X., Hu Q., Guo K., Zhu L., Zhang X. (2016): An ethylene response-related factor, GbERF1-like, from *Gossypium barbadense* improves resistance to *Verticillium dahliae* via activating lignin synthesis. Plant Molecular Biology, 91: 305–318.
- Guo Z.J., Chen X.J., Wu X.L., Ling J.Q., Xu P. (2004): Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Molecular Biology, 55: 607–618.
- Hawku M.D., Goher F., Islam M.A., Guo J., He F., Bai X., Yuan P., Kang Z., et al. (2021): TaAP2-15, An AP2/ERF transcription factor, is positively involved in wheat resistance to *Puccinia striiformis* f. sp. tritici. International Journal of Molecular Sciences, 22: 2080. doi:10.3390/ijms22042080
- He P., Warren R.F., Shan L., Zhao T., Shan L., Zhu L., Tang X., Zhou J.M. (2001): Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to pseudomonas syringae pv. tomato. Molecular Plant-Microbe Interactions, 14: 1453–1457.
- Li N.Y., Zhou L., Zhang D.D., Klosterman S.J., Li T.G., Gui Y.J., Kong Z.Q., Ma X.F., et al. (2018): Heterologous expression of the cotton NBS-LRR gene GbaNA1 enhances Verticillium Wilt resistance in Arabidopsis. Frontiers in Plant Science, 9: 119. doi:10.3389/fpls.2018.00119
- Licausi F., Ohme-Takagi M., Perata P. (2013): APETALA2/ Ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist, 199: 639–649.
- Liu J., Wang Y., Zhao G., Zhao J., Du H., He X., Zhang H. (2017): A novel *Gossypium barbadense* ERF transcription factor, GbERFb, regulation host response and resistance to *Verticillium dahliae* in tobacco. Physiology and Molecular Biology of Plants, 23: 125–134.
- Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25: 402–408.
- Mantiri F.R., Kurdyukov S., Lohar D.P., Sharopova N., Saeed N.A., Wang X.D., Vandenbosch K.A., Rose R.J. (2008): The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in *Medicago truncatula*. Plant Physiology, 146: 1622–1636.

- Mazarei M., Elling A.A., Maier T.R., Puthoff D.P., Baum T.J. (2007): GmEREBP1 is a transcription factor activating defense genes in soybean and *Arabidopsis*. Molecular Plant-Microbe Interactions, 20: 107–119.
- Meng X., Xu J., He Y., Yang K.Y., Mordorski B., Liu Y., Zhang S. (2013): Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. The Plant Cell, 25: 1126–1142.
- Mishra S., Phukan U.J., Tripathi V., Singh D.K., Luqman S., Shukla R.K. (2015): PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Molecular Biology, 89: 173–186.
- Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki K. (2012): AP2/ ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819: 86–96.
- Moffat C.S., Ingle R.A., Wathugala D.L., Saunders N.J., Heather K., Knight H., Knight M.R. (2012): ERF5 and ERF6 play redundantroles as positive regulators of JA/Et-mediated defense against *Botrytis cinerea* in *Arabidopsis*. Plos One, 7: e35995. doi: 10.1371/journal.pone.0035995
- Nakano T., Suzuki K., Fujimura T., Shinshi H. (2006): Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140: 411–432.
- Ohme-Takagi M., Shinshi H. (1995): Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 7: 173–182.
- Oñate-Sanchez L., Anderson J.P., Young J., Singh K.B. (2007): AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiology, 143: 400–409.
- Pré M., Atallah M., Champion A., De Vos M., Pieterse C.M., Memelink J. (2008): The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology, 147: 1347–1357.
- Rashid M., He G., Yang G., Hussain J., Yan X. (2012): AP2/ ERF transcription factor in Rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evolutionary Bioinformatics, 8: 321–355.
- Reymond P., Farmer E.E. (1998): Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology, 5: 404–411.
- Santhanam P., Van Esse H.P., Albert I., Faino L., Nürnberger T., Thomma B.P.H.J. (2013): Evidence for functional diversification within a fungal NEP1-like protein family. Molecular Plant-microbe Interactions, 26: 278–286.
- Sharabi-Schwager M., Samach A., Porat R. (2009): Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene. Plant Biology, 12: 630–638.

- Shen L., Zhao E., Liu R., Yang X. (2022): Transcriptome analysis of eggplant under salt stress: AP2/ERF transcription factor SmERF1 acts as a positive regulator of salt stress. Plants, 11: 2205. doi:10.3390/plants11172205
- Shoji T., Mishima M., Hashimoto T. (2013): Divergent DNA-Binding specificities of a group of ethylene response factor transcription factors involved in plant defense. Plant Physiology, 162: 977–990.
- Shu Y., Liu Y., Zhang J., Song L., Guo C. (2016): Genome-wide analysis of the AP2/ERF superfamily genes and their responses to abiotic stress in Medicago truncatula. Frontiers in Plant Science, 6: 1247. doi: 10.3389/fpls.2015.01247
- Son G.H., Wan J., Kim H.J., Nguyen X.C., Chung W.S., Hong J.C., Stacey G. (2012): Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Molecular Plant-Microbe Interactions, 25: 48–60.
- Wally O., Punja Z.K. (2010): Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops, 14: 199–206.
- Wang N., Fan X., He M., Hu Z., Tang C., Zhang S., Lin D., Gan P., et al. (2022): Transcriptional repression of TaN-OX10 by TaWRKY19 compromises ROS generation and enhances wheat susceptibility to stripe rust. The Plant Cell. 34: 1784–1803.
- Wang Y., Cui X., Bo Y., Xu S., Wei X., Zhao P., Niu F., Sun M., et al. (2020): WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in *Arabidopsis*. Development, 147: dev189647. doi:10.1242/dev.189647
- Wu C., Avila C.A., Goggin F.L. (2015): The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signaling. Journal of Experimental Botany, 66: 559–570.
- Yamaguchi H., Fukuoka H., Arao T., Ohyama A., Nunome T., Miyatake K., Negoro S. (2010): Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, *Solanum torvum*. Journal of Experimental Botany, 61: 423–437.
- Yang L., Xie C., Li W., Zhang R., Jue D., Yang Q. (2013): Expression of a wild eggplant ribosomal protein L13a in potato enhances resistance to *Verticillium dahliae*. Plant Cell Tissue & Organ Culture, 115: 329–340.
- Yang X., Zhang Y., Cheng Y., Chen X. (2019): Transcriptome analysis reveals multiple signal network contributing to the Verticillium wilt resistance in eggplant. Scientia Horticulturae, 256: 108576. doi:10.1016/j.scienta.2019.108576
- Yao Y., He R.J., Xie Q.L., Zhao X.H., Deng X.M., He J.B., Song L., He J., et al. (2017): Ethylene response factor 74 (ERF74) plays an essential role in controlling a respiratory

burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in *Arabidopsis*. New Phytologist, 213: 1667–1682.

Zhao Y., Wei T., Yin K.Q., Chen Z., Gu H., Qu L.J., Qin G. (2012): Arabidopsis RAP2.2 plays an important role in plant resistance to *Botrytis cinerea* and ethylene responses. New Phytologist, 195: 450–460. Zhu W., Liu X., Chen M., TaoN., Tendu A., Yang Q. (2021): A New MiRNA MiRm0002 in eggplant participates in the regulation of defense responses to Verticillium Wilt. Plants, 10: 2274. doi: 10.3390/plants10112274

Zuo K.J., Qin J., Zhao J.Y., Ling H., Zhang L.D., Cao Y.F., Tang K.X. (2007): Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 391: 80–90.

Received: March 31, 2023 Accepted: October 18, 2023 Published online: November 16, 2023