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Abstract: Weeds are the major menace to agriculture, which greatly impact crop growth and development, resulting in
economic yield loss or crop failures. Therefore, it is indispensable to take up appropriate weed management practices to
prevent the effects of weeds on crops. Chemical herbicides have immense potential for effective control of weeds, but, in
the long run, the persistent nature of herbicides adversely affects the soil microbes and also that terrestrial and aquatic
ecosystems. Bioherbicides are products derived from plant extracts, allelochemicals or microbes and their secondary
metabolites with weed-suppressing abilities. Most microbial bioherbicides are based on fungi and its active ingredients,
which successfully control weeds with different mode of actions. Moreover, the toxins or secondary metabolites the fun-
gi produce also possess herbicidal properties. So, exploring the fungal pathogens and their toxins for managing weeds
seems to be a feasible and eco-friendly way for the management of weeds. There is a wider scope for utilizing fungi and
their secondary metabolites as mycoherbicides, which have the potential to replace hazardous chemical herbicides in
the near future. This review article mainly emphasizes the scope of mycoherbicides and explores the fungal secondary
metabolites for eco-friendly weed control.
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Weeds are the main competitors to the crop for ciency when compared to other biotic factors like
various resources like nutrients, moisture, light, insects (30%), diseases (20%) and other pests (5%).
space, etc. They are one among the biotic factors An economic loss of around 11 billion USD has
which cause severe yield reduction (45%), increase  been estimated due to the infestation of weeds in
the cultivation cost and decrease the input effi- 10 major crops of the Indian sub-continent (Gharde
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et al. 2018). Crop production is highly challenged
by weeds, which have to be managed appropriately,
or else they will result in a huge decline in the yield
of the crops. The survey conducted by several weed
scientists revealed that around 10-100% of yield
loss was observed in major crops grown in India
owing to severe weed infestation (Rao & Chauhan
2015). Due to the scarcity of labour in agricultural
activities, chemical herbicides have become indis-
pensable in modern cropping and farming systems.
Unfortunately, improper and irregular application
of herbicides paved the way for several environ-
mental issues like herbicide resistance, groundwa-
ter contamination, soil health reduction, soil mi-
croflora exhaustion, loss of biodiversity, threat to
human health, etc. So, to manage weeds effectively
as well as to sustain the health of the ecosystem,
the concept of biological control of weeds has to be
adopted (Kubiak et al. 2022).

In the last four to five decades, many scientists
have turned towards the biological approach of
weed control through plant extracts, insects, patho-
gens, fish, etc. The trend of utilizing bioherbicides
like allelochemicals secreted by plants and the use
of fungal pathogens and their secondary metabo-
lites or mycotoxins for the successful management
of weeds has been advancing in recent days. Exu-
dates of various plants and weeds have immense
potential to limit the growth and development of
various weeds. Likewise, numerous insects were
also engaged in the management of some noxious
and troublesome weeds. Various fungal patho-
gens naturally induce severe necrotic symptoms
in diverse weed species. So, there is a possibility of
inducing such infections in weeds through a my-
coherbicidal approach. Several mycoherbicidal
products have been registered and commercialized
worldwide for weed management through an eco-
friendly approach. In the near future, growers may
rely upon mycoherbicide formulations to control
the weeds as a sustainable approach. They possess
enormous potential to manage problematic weeds
efficiently without harming the ecosystem. Simi-
larly, the culture filtrates and the toxins released by
pathogens can also be utilized to manage the weeds
irrespective of the environmental conditions. Sev-
eral mycotoxins have been identified which effec-
tively induce phytotoxicity on various weed spe-
cies. So, in this review, prime emphasis is given to
the utilization of fungal pathogens and their sec-
ondary metabolites, which have the potential to
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act as an alternative to chemical herbicides for the
effective and eco-friendly management of weeds,
thereby sustaining the ecosystem.

ENVIRONMENTAL HAZARDS DUE TO
CHEMICAL HERBICIDES

Due to the constraints of agricultural labour, time,
and cost, the chemical method of weed control has
become inevitable for the instant management of
weeds (Barman & Varshney 2008). The application
of chemical herbicides significantly contributed
to maximizing agricultural production to support
vast populations all over the world. However, in
due course of time, the indiscriminate application
of herbicides has resulted in the persistence of tox-
ic chemicals in soil and has posed serious hazards
to the ecosystem.

Soil contamination. Soil comprises microorgan-
isms like bacteria, fungi, actinomycetes and mac-
roorganisms viz., earthworms, insects, spiders,
nematodes, etc. This complex array of life forms is
directly involved in various processes like decom-
posing residues, recycling and storing nutrients,
and maintaining the soil structure, texture, stabil-
ity and degradation of soil contaminants. The her-
bicide sprayed on the weed not only gets contact
with it but also with the soil and its surrounding
ecosystem. This might affect the rhizospheric mi-
crobes, soil-borne pathogens, pests, and disease
antagonists. Generally, bacteria have a better abil-
ity to decompose the herbicides when compared to
fungi and actinomycetes (Lone et al. 2014). The ac-
tivity and count of soil microbes were encouraged
in the soil deprived of herbicide application. Few
studies recorded that the chemical nature, dosage,
soil type, and sampling time played a major role in
soil contamination by herbicides.

Application of herbicides viz., butachlor at the con-
centration 1.0 kg/ha, 2,4-D ethyl ester at the concentra-
tion 0.75 kg/ha and pyrazosulfuron ethyl at the concen-
tration 25 g/ha reduced the count of total heterotrophic
bacteria (Latha & Gopal 2010). Adhikary et al. (2014)
reported that a transient decrease in microbial popula-
tion was observed with the application of pendimeth-
alin (3 300 mL/ha) and oxyfluorfen (850 mL/ha). Spray-
ing acetochlor at different concentrations, viz., 1.25,
1.50, 2.50, 3.125 and 5.0 L/ha, lowered the count of soil
bacteria, fungi and actinomycetes (Tyagi et al. 2018).
Kumar et al. (2020) revealed that the application of
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the herbicide bispyribac sodium (35 and 75 g/ha) de-
creased the soil microbial population, microbial bio-
mass carbon and the activities of soil enzymes. Ji et al.
(2023) assessed the impact of atrazine on soil microbes
and revealed that the application of atrazine lowered
the population of soil microorganisms. Some findings
have supported the fact that herbicide residues can
serve as a carbon and energy source for microorgan-
isms, while other reports claim that herbicide residues
result in devastating effects on soil biology and chem-
istry. However, in the long term, it may disrupt the
soil's biochemical balance, thus reducing soil fertility
and productivity (Hussain et al. 2009; Marin-Morales
etal. 2013). The active ingredients present in the herbi-
cides affect the nitrite synthesis, nitrogen fixation and
mycorrhizal process.

Aquatic toxicity. Because of the cumulative in-
crease in the use of herbicides for controlling the
weeds, the residual chemicals find their destination
in the nearby streams, lakes and underground water
sources through leaching and runoff mechanisms
and jeopardize the health of the marine and aquat-
ic ecosystem (Sondhia 2014). Furthermore, these
chemical herbicides maximize the reproductive
toxicity of various aquatic species (Yang et al. 2021).

Human health effects. Consumption of such
chemicals results in severe health hazards for life
forms, including humans, animals, etc. (Kubiak
et al. 2022). Likewise, Balderrama-Carmona et al.
(2020) disclosed that human beings exposed to
chemical herbicides or consuming foods contami-
nated with residues of herbicides result in serious
health hazards like infertility, neurotoxic effects, cy-
totoxicity, endocrine disruption, kidney problems,
etc. Gupta (2022) stated that exposure to chemical
herbicides affects the developmental processes and
disrupts reproduction in humans and animals.

BIOLOGICAL APPROACHES OF WEED
MANAGEMENT

Usually, weeds are managed by physical/mechanical/
cultural/chemical/biological methods or their com-
bination. Due to the shortage of agricultural labour,
adverse effects of chemical herbicides, increasing rate
of herbicide resistance, high cost involved in weed
control methods, etc., have led to the preference for
biological methods of weed control in the upcoming
days. It has encouraged various agronomic scientists to
formulate sustainable weed management approaches
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(Hershenhorn et al. 2016). Biological control suppress-
es weeds through biological agents or natural enemies
(Figure 1). These agents may be plant pathogens (fungi,
viruses, bacteria and nematodes), phytophilous arthro-
pods (insects and mites), fish (grass carp), birds (geese)
and other animals (sheep) (Westwood et al. 2018).
There are two strategies for biological weed con-
trol: classical (inoculative) and inundation (aug-
mentation or bioherbicidal). The inoculative meth-
od deals with the introduction and exploitation of
non-native or foreign agents to suppress an exotic
aggressive weed in its new area of infestation, while
the augmentation method deals with the exploita-
tion of indigenous or native bio-agents to manage
weeds by amplifying their population intensities be-
yond usual levels (Aneja et al. 2017; Bo et al. 2020).

MYCOHERBICIDES

Microbe-based bioherbicides, which particularly in-
volve fungal pathogens and their secondary metabolites
for the management of weeds, are termed mycoherbi-
cides. The steps involved in the development of biologi-
cal control of weeds with fungal pathogens are (i) ex-
tensive exploration for plant pathogens associated with
the weeds, (ii) environmental studies and geographic
features of the native or indigenous areas of the patho-
gen, which have a massive impact on disease infectivity
(pathogen's ability to cause infection), intensity, viru-
lence (severity of the infection caused by the pathogen)
and the ability to extend its range from one plant to the
other has to be considered and (i) determining the
safety of the pathogen by observing its taxonomic po-
sition and by carrying out host specificity (range and
variety of host species on which the pathogen can incite
infection) studies (Gupta & Mukerji 2000). The ideal
characteristics of a potential mycoherbicidal pathogen
have been depicted in Figure 2. Various processes in-
volved in developing mycoherbicidal formulations with
fungal spore suspension and fungal metabolites for
managing weeds are illustrated in Figure 3.

POTENTIAL FUNGAL PATHOGENS FOR
WEED CONTROL

Application of conidial suspension of Curvularia
lunata (strain B6) at the concentration 1 x 10% to
1 x 10° per mL in rice fields at three leaf stage of
the weeds effectively controlled Echinochloa crus-
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(Zygogramma bicolorata)
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{(Weed management in grasslands)
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(Trianthema portulacastrum)

Figure 1. Various biological approaches employed for the management of weeds

Bioformulations prepared from plant extracts, fungi, bacteria and viruses can be successfully utilized for managing weeds.

Similarly, insects, nematodes and mites can also be introduced into areas of severe weed infestation to control the specific

weed species. Integrating fishes and ducks in lowland ecosystems (paddy fields) assists in managing the aquatic weeds.

Likewise, animals like sheep can be exclusively used for managing the weeds in grasslands and roadsides

Effective
colonization

Host
specificity

Rapid
defoliation

Potential
mycoherbicidal
pathogen

Formulation
compatibility

High
virulence

Broad
environmental
tolerance

Figure 2. Ideal characteristics of a potential mycoherbi-
cidal pathogen for effective weed management
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galli (Jing et al. 2013). Spraying of spore suspen-
sion of the fungal pathogen, Bipolaris eleusines at
the concentration 1 x 107 conidia per mL at three
leaf stages resulted in severe mortality (73%) of
E. crus-galli (Zhang et al. 2014). Inoculation of ne-
crotrophic pathogen Colletotrichum echinochloae
(isolate B-48) spore suspension at the concentra-
tion 1 x 107 spores per mL on E. crus-galli signifi-
cantly reduced its fresh weight (Gu et al. 2023).
The fungal pathogens such as Alternaria alter-
nata, Fusarium oxysporum and Phoma herbarum
caused a severe infection on Trianthema portu-
lacastrum. Among them, spraying of P. herbarum
registered the maximum mortality of 7. portulac-
astrum (Ray & Vijayachandran 2013). Inocula-
tion of Gibbago trianthemae at the concentration
5 x 10* spores per mL effectively controlled 7. por-
tulacastrum (Mitchell 1988). Aneja et al. (2013)
revealed that applying a conidial suspension of
G. trianthemae at the concentration 2.2 x 10° co-
nidia per mL to T. portulacastrum resulted in
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Figure 3. Steps involved in the development of mycoherbicidal formulation

severe defoliation. Gaddeyya and Kumar (2015)
sprayed the conidial suspension of G. trianthemae
at the concentration 5 x 10* spores per mL supple-
mented with surfactant (tween 20 at the concen-
tration 0.02%) on T. portulacastrum and reported
a percentage disease index of 95-98%. The post-
emergence spraying of the liquid formulation of
G. trianthemae at the concentration 10 x 10° spores
per mL effectively controlled T. portulacastrum in
maize crop (Sreeja 2022; Sreeja et al. 2022).
Isolates of Sclerotium rolfsii from Parthenium
hysterophorus exhibited varied disease incidence
percentages on P, hysterophorus and have the enor-
mous potential to be developed as a mycoherbi-
cide (Shukla & Pandey 2008). In vitro and in vivo
studies carried out by Kumar et al. (2009) revealed
that Cladosporium sp. (MCPL 461) can potentially
control Parthenium hysterophorus. Spore suspen-
sion of Cladosporium sp. at the concentration 10'°
to 10'% spores per mL sprayed on P. hysterophorus
produced severe disease symptoms. Further, a 3%
sucrose solution was added to the formulation
to improve its mycoherbicidal activity, enhanc-
ing its efficacy. Application of spore suspension
of the pathogen Alternaria alternata 1ITCC4896
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at the concentration 1 x 10° spores per mL effec-
tively controlled P hysterophorus (Saxena & Ku-
mar 2010). Kaur and Aggarwal (2015) controlled
the troublesome weed P. hysterophorus biologically
by developing mycoherbicidal formulations of Al-
ternaria macrospora.

Application of conidial suspension of the pathogen
Nimbya alternantherae at the concentration 1 x 10°
and 1 x 10° conidia per mL effectively controlled
Alternanthera philoxeroides under greenhouse and
field conditions, respectively (Pomella et al. 2007).
Lima et al. (2010) developed a conidial suspension
of Plectosporium alismatis, and application of the
spore suspension at the concentration of 2 x 10® and
2 x 107 conidia per mL produced the symptoms of
leaf blight to the extent of 86% and 93%, respectively
on Sagittaria montevidensis. Spore suspension of
Phaeoacremonium italicum at the concentration
1 x 10° spores per mL produced 100% and 90% dam-
age to Eichhornia crassipes around 144 h post inocu-
lation in detached leaf assay and whole plant assay
respectively (Singh et al. 2016).

A spray concentration of 107 Alternaria alternata
spores per mL in rapeseed oil emulsion formulation
applied to Amaranthus retroflexus plants resulted in
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complete mortality of the plants at four-leaf stage
(Ghorbani et al. 2000). Spore inoculum of the fun-
gal pathogen A. alternata (LC#508) sprayed at the
concentration of 1.65 x 10° spores per mL caused
mortality of Lantana camara in detached leaf as-
say, in vitro cut shoot assay and also in vivo bioas-
say (Saxena & Pandey 2002). The mycoherbicidal
formulation prepared in canola oil emulsion (20%)
with A. alternata spores at concentration 107 per
mL effectively controlled Chenopodium album (Sid-
diqui et al. 2010).

Application of conidial suspension of Myrothe-
cium verrucaria at concentration 2 x 107 spores
per mL coupled with the surfactant Silwet at
the concentration 0.2% to the weeds viz., com-
mon purslane, horse purslane, spotted spurge and
prostate spurge at 2-3 leaf stage resulted in ne-
crotic symptoms within 24 h of inoculation and
after seven days of inoculation the pathogen killed
almost 90-95% of both the purslane weed spe-
cies and 85-95% of both the spurge weed species
(Boyette et al. 2007). Lee et al. (2008) inoculated
the spore suspension of the fungal pathogen AMy-
rothecium roridum (F0252) at the concentration of
6.5 x 10° and 2.5 x 107 spores per mL to the seeds
of white clover and ladino clover and the spore
suspension greatly inhibited the germination of
seeds and severely affected the seedling growth
of the weeds under in vitro conditions. The myco-
herbicidal activity of the pathogen was also evaluat-
ed under in vivo conditions, which displayed broad-
spectrum herbicidal properties.

Fungal pathogen Phomopsis cirsii is highly path-
ogenic to the weed Cirsium arvense, causing the
symptoms of dieback and stem canker, and the
mycopathogen can be utilized as a potential my-
coherbicidal agent against the host weed species
(Leth et al. 2008). Toh et al. (2008) revealed that
Lasiodiplodia sp. caused severe seedling mortality
of Parkinsonia aculeata and can reduce the seed
bank of P. aculeata. Cipriani et al. (2009) reported
that Fusarium oxysporum is specific and extremely
virulent to Orobanche ramosa and has the potential
to be developed as a mycoherbicide. Application of
spore suspension of the pathogen Aureobasidium
pullulans at the concentration of 10'® spores per
mL resulted in maximum infection of the weed
Chromolaena odorata (Prashanthi & Kulkarni
2005). Conidial suspension of Phoma multirostrata
at concentration 1 x 10® conidia per mL effectively
induced disease symptoms on Tridax procumbens
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to the extent of around 60—-98% under laboratory
conditions and 65-87% under greenhouse condi-
tions 15-20 days post inoculation of the spore sus-
pension (Srisuksam et al. 2022).

Since the 1960s, various microbial bioherbi-
cides have been registered and commercialized,
of those majority of them were derived from the
fungi such as Lubao, DeVine® Collego™ (Lock
Down®), Casst’', ABG-5003, Dr. Biosedge®, Vel-
go®, BioMal®, Stumpout™, BioChon'", Hakatak®,
Woad Warrior®, MycoTech™, Chontrol™ (Eco-
Clear™), Smoulder®, Sarritor, Phoma® Gib-
batrianth and Di-Bak Parkinsonia® The fungal
pathogen(s) involved and the target weed(s) of
the respective mycoherbicides are illustrated in
Figure 4. Camperico ', Organo-sol® (Kona' /Bio-
protec’"), MBI-005 EP (Opportune"), D7® and
Battalion Pro are bioherbicides based on bacteria.
SolviNix" is the only bioherbicide based on vi-
rus. The detailed description of the above-men-
tioned bioherbicides, like the time of registration
and country, biocontrol agent involved, type of
formulation, and their target weeds, were clearly
specified by Cordeau et al. (2016), Aneja et al.
(2017), Galea (2021) and Kremer (2023).

Several bioherbicidal products have been regis-
tered and commercialized to date, but only a few
products are available in the market. This might
be due to low consumer demand, cost involved in
the mass production of formulations, inconsistent
performance under field conditions, etc. So, to de-
velop an effective and efficient mycoherbicide, the
fungal pathogens possessing high virulence and the
determinants of virulence must be recognized. The
selected fungal agent should be well prepared to fit
and adapt to the field conditions.

SUCCESSFUL EXAMPLES OF
BIOLOGICAL CONTROL OF WEEDS

Management of Striga hermonthica in Kenya.
Striga hermonthica, a partial root parasitic weed,
depends on cereal crops for nourishment. Due
to the severe infestation of this parasitic weed in
sub-Saharan Africa, there was a massive reduction
in the yield of crops, especially maize, which ex-
perienced severe impact due to the infestation of
S. hermonthica and sometimes total crop failures
have also been observed. The biological approach
of utilizing the fungal pathogen, Fusarium oxyspo-
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rum f. sp. strigae, was undertaken to manage the
weed effectively. This pathogen selectively attacks
Striga sp. without causing any effects on crops
like maize, pearl millet, sorghum, rice, cowpea,
groundnut, cotton, fonio and okra. Nevertheless,
some plants of Solanaceae were susceptible to it.

The concept of amino acid toxicity was utilized
here, and the amino acids that exclusively inhibit
S. hermonthica but not maize were identified; they
are tyrosine and leucine. The specific strains of the
fungal pathogen E oxysporum that overproduce
the amino acids (tyrosine and leucine) were se-
lected. In addition, the variants that overproduce
methionine were also selected as the amino acid
methionine gets converted into ethylene due to the
activity of soil microbes, which assists in the ger-
mination of Striga. Three selected strains of fungal
pathogen (Leu2a, Z6a and Z5a) that overproduce
the amino acids viz., leucine, methionine and tyro-
sine were cultured individually on potato dextrose
agar medium on which sterile wooden toothpicks
were placed. The fungi grew and ramified on the
toothpicks. Then, they were dried aseptically in
a laminar flow cabinet, and after complete drying,
the trio of toothpicks (Leu2a, Z6a and Z5a) were
stored in sterile straws. This 1:1:1 ratio of a trio of
toothpicks with fungus, Fusarium oxysporum f. sp.
strigae was denoted as Foxy T14.

The toothpick containing the fungus was de-
livered to the farmers, and they inoculated it in
cooked and cooled pearled rice (ideal substrate to
support the mycelial growth) to provide fresh on-
farm inoculum of the fungal pathogen. Both the
cooked rice and toothpick were placed in the ster-
ile container and were shaken twice daily for three
days. This technology was tested on 500 farms in-
fested with Striga in Western Kenya. It has been re-
ported that a drastic reduction in the infestation of
Striga to the extent of 80% and 92% in the long and
short seasons, respectively, subsequently enhanced
the yield of maize by 56.5% and 42% in the long and
short seasons, respectively. Here, the yield of maize
grown in the short season declined due to drought.
Additionally, it has been reported that the Foxy
T14 lines had not produced toxins, conferring its
non-toxic nature (Nzioki et al. 2016).

Management of Parkinsonia aculeata in
Northern Australia. P aculeata populations
were massive in the Northern Australian region,
possessing a serious threat to the ecosystem. So,
to manage them, a bioherbicidal product (Di-Bak
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Parkinsonia®) comprising of three endophytic
fungi viz., Lasiodiplodia pseudotheobromae,
Macrophomina phaseolina and Neoscytalidium
novaehollandiae was used. Di-Bak Parkinsonia is
a capsule form of woody weed bioherbicide. It was
successfully directed into the stem of the woody
plants manually using an applicator device. The
successful implant of the bioherbicide capsule
resulted in the development of dieback symp-
toms. After a period of successful establishment,
it progressed through the neighbouring untreated
population, causing an enormous decline in the
infestation vigour of P. aculeata (Galea 2021).

CELL-FREE CULTURE FILTRATES WITH
HERBICIDAL VALUES

Cell-free culture filtrates have numerous advan-
tages, which minimize the limitations attributed
to conventional microbe-based products, espe-
cially on the shelf life and viability of the conidial
suspension. Pathogens secrete a wide range of
bioactive molecules and secondary metabolites.
Such metabolites represent a large pool of com-
pounds that can enhance crop growth and crop
protection (Izurdiaga et al. 2023). Quereshi and
Pandey (2007) extracted the cell-free culture ex-
tract of Phoma sp. FGCCW#54 which exhibited
excellent herbicidal properties against Partheni-
um hysterophorus.

Similarly, cell-free culture filtrate of the fungal
pathogen Phoma herbarum (FGCCPH#27) pro-
duced phytotoxic symptoms on Parthenium hys-
terophorus in shoot cut, seedling and detached
leaf bioassays which revealed that the fungal
pathogen has immense potential to produce sev-
eral phytotoxic compounds with promising her-
bicidal values (Singh et al. 2013). The noxious
weed P. hysterophorus can be biologically man-
aged by exploiting the cell-free culture extract of
Alternaria macrospora MKP1 and Alternaria sp.
PMK2 (Kaur et al. 2016; Kaur & Aggarwal 2016).
Singh and Pandey (2019a) reported that maxi-
mum disease ratings were observed in treating
21 days old cell-free culture filtrate of Fusarium
sp. (FGCCW#16) at 100% concentration on Par-
thenium hysterophorus. Singh et al. (2010) stated
that the cell-free culture filtrate of Colletotrichum
dematium FGCC#20 produced severe phytotoxic
symptoms in P. hysterophorus.
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Cell-free culture filtrate of the Alternaria alter-
nata LC-110 and LC-104 strains induced phytotox-
ic symptoms on Lantana camara due to the toxic
metabolites produced by the pathogen (Saxena
& Pandey 2000). The 28-day-old cell-free culture
extract of Phoma herbarum (FGCCW#18); 100%
concentration resulted in maximum mortality and
phytotoxic symptoms on Xanthium strumarium
in the shoot cut and seedling bioassay (Singh &
Pandey 2019b). Helminthosporium (FGCCW#53)
pathogen cell-free culture filtrate exhibited excel-
lent herbicidal potential against Sida acuta, caus-
ing severe phytotoxicity (Singh & Pandey 2021).
The aqueous extract of Macrophomina phaseolina
culture filtrate inhibited the seed germination of
Convolvulus arvensis, Malva neglecta and Sorghum
halepense. Moreover, the in vitro and in vivo stud-
ies also revealed that the aqueous extract of Mac-
rophomina phaseolina culture filtrate produced
phytotoxic damage to Malva neglecta, Convolvu-
lus arvensis, Poa pratensis and Sorghum halepense
(Theer et al. 2021).

SECONDARY METABOLITES

Plant pathogens synthesize and release various
phytotoxins, which obstruct and intrude on plant
metabolism, causing necrotrophic effects that
might extend up to the mortality of plants. These
phytotoxins possess a wide range of actions requir-
ing a direct interface with a specified plant compo-
nent like membrane or enzyme receptor, etc. (Vey
et al. 2001). The absence and alteration of such re-
ceptors may not produce phytotoxic effects. So, the
phytotoxins and their targets are indispensable fac-
tors affecting the pathogen's host range (Hoagland
et al. 2007). These metabolites exhibit phytotoxicity
at diverse stages of plant growth and development.
Various classes of fungal phytotoxins are presented
in Figure 5. Most of the phytotoxic fungal toxins
belong to the classes of terpenoids (Bipolaroxin,
Chenopodolin, Ophiobolins, Prehelminthosporol),
polyketides (Ascochytine, De-O-methyldiaporthin,
Monocerin, Putaminoxin), nitrogenous metabo-
lites (Ascosonchine, Cytochalasins, Fumonisin B,
Fusaric acid, p-nitropropionic acid, Tryptophol)
and phenols and phenolic acids (Curvulin) (Xu et al.
2021; Bendejacq-Seychelles et al. 2024). The explo-
ration for alternate ways of weed control resulted
in the utilization of phytotoxic fungal toxins or sec-
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ondary metabolites, and they were regarded as one
of the most efficacious and eco-friendly approaches
to weed management (Evidente 2023; Bendejacq-
Seychelles et al. 2024). These phytotoxic fungal me-
tabolites play a vital role in the biological control of
weeds by causing chlorosis, necrosis, wilting, halt-
ing the germination of seeds and growth inhibition
(Liu & Li 2004). These mycometabolites possess
immense herbicidal values and can manage weeds
through several mechanisms of action like altering
the metabolic processes, triggering the production
of ROS, ABA, ethylene, inhibiting germination and
growth, etc (Radhakrishnan et al. 2018).

Phomentrioloxin, a mycotoxin isolated from the
liquid culture of the fungal pathogen Phomopsis sp.,
exhibits immense mycoherbicide potential for man-
aging Carthamus lanatus. The toxin causes necrotic
spots on leaves when applied to the host and non-
host plants at a concentration of 6.85 mM (Cim-
mino et al. 2012). Fungal pathogen Phyllosticta cir-
sii isolated from Cirsium arvense produces various
phytotoxic metabolites with promising herbicidal
properties when subjected to liquid culture. From
the liquid culture of the pathogen, the compounds
phyllostictines A-D were isolated. When tested on
the host plant by leaf puncture assay, phyllostic-
tine A was highly toxic, whereas phyllostictines B
and D caused moderate phytotoxicity, and phyllos-
tictine C had no effect (Evidente et al. 2008a).

Additionally, Evidente et al. (2008b) also reported
that the further purification of the extract result-
ed in two toxins viz., phyllostoxin and phyllostin.
When assayed on the punctured leaves of Cirsium
arvense, phyllostoxin exhibited more phytotoxic-
ity, causing necrotic symptoms, whereas phyllostin
displayed no phytotoxicity. Likewise, several phy-
totoxic mycometabolites are involved in managing
various weeds. Various toxins produced by differ-
ent Alternaria sp. and their target weeds are illus-
trated in Figure 6. The metabolites of other myco-
pathogens, their target weeds and their mode of
action are presented in Table 1.

NANOFORMULATIONS OF
MYCOHERBICIDES

The controlled release of phytotoxic metabo-
lites can be accomplished using nanoformulation
technology. The toxin or metabolite can be cou-
pled with a nanocarrier to protect it from degrada-
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Table 1. Fungal metabolites possessing promising herbicidal properties

Fungal

Phytotoxin pathogen Target weed Mode of action Reference
Ascaulitoxin Ascochyta Chenopodium album potent growth inhibiting (EVldepte et al. 1998;
caulina molecule Cimmino et al. 2015)
. Ascochyta . (Venkatasubbaiah
Ascochytine hyalospora Chenopodium album electrolyte leakage & Chilton 1992)
Sonchus arvensis, . .
Ascosonchine Ascochy .ta Salvia officinalis, phytoto.x1c%ty produc.lng ne (Evidente et al. 2004)
sonchi . . . crotic circular lesions
Euphorbia helioscopia, etc.
zonate lesions and flecking of
. . Bipolaris Cynodon dactylon, leaves, elevated light
Bipolaroxin cynodontis Sorghum halepense, etc. intensities enhance (Sugawara et al. 1985)
the severity of symptoms
Echinochloa crus-galli, Inhibits the acthlty‘of amino
. e Lo transferase at higher .
- Peacilomyces Digitaria sanguinalis, . (Nakajima et al. 1991;
Cornexistin . concentrations only after
variotii Sorghum halepense, . L Duke & Dayan 2011)
. incubating it in a plant cell
Solanum nigrum, etc.
extract
Chenopodolin Phomq Cirsium arvense, Sfemrm viride producgs necrotic (Cimmino et al. 2013)
chenopodicola and Mercurialis annua lesions
Curvulin Dr.ech.slem Portulaca olerac?a produces necrotic (Kenfield et al. 1989)
indica and Amaranthus spinosus symptoms
at higher concentrations, it
Cvperine Ascochyta Cuperus s inhibits the activity of proto-  (Stierle et al. 1991;
P cypericola P P: porphyrinogen oxidase Duke & Dayan 2011)
enzyme
Cytochalasins Pyrenophora Bromus tectorum and various

(Z2,Z,,7,B,ET) semeniperda genera of grasses

Echinochloa crus-galli,

De-O-methyldia-  Drechslera .
. ; Amaranthus spinosus
porthin siccans T
and Digitaria sp.
Fumonisin B Fusgrlum Datura stramonium
1 moniliforme
L Fi ] . .
Fusaric acid usartum Striga hermonthica
nygamai
Chenopodium album,
Sida rhombifolia, Senna
Hyalopyrone Ascochyta  obtusifolia, Ipomoea purpurea,
hyalospora Sorghum halepense,
Agrostis, Ambrosia,
Datura stramonium, etc
s Ph
Macrocidins A, B oma Several broad-leaved weeds
macrostoma
. Exserohilum Sorghum halepense
Monocerin . o
turcicum and Cirsium arvenses

B-nitropropionic

. Cirsium arvense
acid

Septoria cirsii

reduction in root growth  (Cimmino et al. 2015)

produces necrotic

(Hallock et al. 1988)
symptoms

disturbs the sphingolipid
metabolism by inhibiting the
activity of ceramide synthase
enzyme

(Abbas et al. 1991)

causes chlorosis, necrosis  (Capasso et al. 1996)

(Venkatasubbaiah

electrolyte leakage & Chilton 1992)

bleaching of leaves

and chlorosis (Graupner et al. 2003)

Root necrosis and inhibits ~ (Robeson & Strobel
root elongation 1982)
Inhibits seed germination,
root elongation subsequently (Hershenhorn
followed by chlorosis et al. 1993)

and necrosis
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Table 1. to be continued
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Phytotoxin pgghl})g;e}n Target weed Mode of action Reference
Ophiobolin A is highly phyto-
toxic to several monocots
and dicots whereas
6-epi-ophiobolin exhibits inhibition of seed .
i i . E L.
&p }E(;bginsi_ reduced toxicity germination, electrolyte (Evidente et al. 20062)
2y P Drechslera  3-Anhydro-6-epi-ophiobolin A leakage, alters
-Ophiobolin, ; . . S .
. sorghicola is phytotoxic to Setaria viridis the permeability of cell
3-Anhydro-6-epi- . . .
. . and Diplotaxis erucoides membrane, causes
-ophiobolin A) ] . L . . .
Ophiobolin B is highly toxic necrotic lesions
while ophlobohn ] is slightly (Evidente et al. 2006b)
toxic to Bromus sp.
and Hordeum marinum
Prehelminthos- . . produces necrotic spots (Pena-Rodriguez
porol Bipolaris sp. Sorghum halepense and lesions et al. 1988)
Putaminoxin Phon‘m Erzgf?ro’n CLTITLLLLS, chlorosis and necrosis (Evidente et al. 1995)
putaminum Mercurialis annua, etc.

. Ascochyta . (Venkatasubbaiah
Pyrenolide A hyalospora Chenopodium album electrolyte leakage & Chilton 1992)
tmns—4‘—am1— Ascochy ta Chenopodium rubrum produces large necrotic lesions (Evidente et al. 2000)
noproline caulina

Drechslera L . . (Sugawara & Strobel
Tryptophol nodulosum Eleusine indica produces necrotic lesions 1987)

tion (Hershenhorn et al. 2016). Namasivayam et al.
(2015) reported that the coating of chitosan nano-
particles on the metabolite extracts of Fusarium
oxysporum effectively controlled Ninidam theen-
jan. Nanoformulations of biochemical herbicides
enhance the biocontrol efficacy due to the massive
surface area exhibited by the nanoparticles, which
in turn requires a lower volume of bioherbicide,
thus intensifying the concentration in a smaller
package at a lower cost (Pallavi et al. 2017).

CHALLENGES FOR THE DEVELOPMENT
OF MYCOHERBICIDES

There are various challenges ahead for the suc-
cessful development of a mycoherbicide. It may be
due to technological, environmental, biological or
commercial constraints (Auld et al. 2003). Tech-
nological constrictions like formulation type and
mass production highly affect the development of
mycoherbicide. With respect to the foliar applica-
tion of fungal pathogens, the factors, viz., mois-
ture, temperature, extent of leaf wetness, etc., sig-
nificantly influence the germination and the ability
to produce infection structures (Boyetchko et al.
2002). Since most pathogens require extended pe-
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riods of leaf wetness or high humidity, i.e., dew pe-
riod, to cause maximum infection, using mycoher-
bicides through foliar spray has been restricted to
the irrigated areas. A major limitation attributed
to the solid formulation is that they must wait for
the suitable conditions required for the fungus to
grow and induce infection vigorously. The weather
factors such as temperature, relative humidity are
the major constraints which severely influence the
efficacy of mycoherbicides, as the fungal patho-
gens require a specific environmental condition to
induce infections.

Regarding biological constraints, resistance and
host variability are the prime limitations. To sort
out the issues of host range and to augment the ef-
fectiveness of mycoherbicides, various efforts were
made to amalgamate several host-specific patho-
gens for a single application. Accordingly, various
efforts have been made to control closely related
weeds by exploiting the fungal pathogens that pos-
sess a broad spectrum and extended host ranges
(Rosskopf et al. 1999). In this multiple-pathogen
strategy, two or more fungal pathogens were com-
bined at ideal inoculum levels and applied over the
target plants as pre- or post-emergence applications
(Charudattan & Dinoor 2000). The practicability of
this method has been proved in greenhouse con-
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ditions as well as in field conditions where seven
grassy weeds were successfully controlled by the
combined application of fungal pathogens viz.,
Drechslera gigantea, Exserohilum longirostratum,
and E. rostratum as an emulsion (Chandramohan
et al. 2000). Likewise, the fungal pathogens Colle-
totrichum dematium, Phomopsis amaranthicola,
Alternaria cassia and Fusarium udum were com-
bined to kill three different species of weeds (Chan-
dramohan & Charudattan 2003).

Commercial constraints like the cost involved
in the production of mycoherbicide and the mar-
ket potential of mycoherbicides is too limited,
so the companies are reluctant to come forward
to develop mycoherbicidal products (Auld et al
2003). From an economic perspective, a mycoher-
bicide controlling numerous closely related weeds
(i.e., broad spectrum) would be encouraged (Duke
2024). The production costs of the mycoherbicides
should be minimized and parallelly maintain the
virulence of fungal pathogens with extended shelf
life through efficient formulations and advanced
application techniques (Golijan et al. 2023).

RISKS ASSOCIATED WITH
MYCOHERBICIDES

The major risks associated with the utilization of
mycoherbicides comprising of either fungal spores
or their secondary metabolites are as follows.

Detrimental effects on non-target plants due to
the introduction of non-native organisms. The my-
coherbicidal formulations may also affect the main
and subsidiary crops due to the introduction of non-
native organisms. One such example was the release
of the fungal pathogen Puccinia melampodii (isolated
in Mexico) in Australia for the management of noxious
and allergic weed Parthenium hysterophorus through
an integrated approach even though the pathogen has
the potential to sporulate on various sunflower and
marigold cultivars (Evans 2000). However, over time,
the Australian Quarantine and Plant Inspection Ser-
vice reported that the pathogen, besides controlling
the weed, caused serious damage to the non-target
plants (Hoagland et al. 2007).

Mammalian and aquatic toxicity. Besides effectively
controlling the target weeds, the toxins or metabolites
produced by such pathogens might possess toxicity to
humans, animals, etc. Foods and feedstuffs are habitu-
ally contaminated with the fungal toxicants consumed
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by humans as well as other animals, thus subsequently
contracting diseases (Zain 2011). Aflatoxin B, and tox-
ins derived from Fusarium sp. were also reported to
cause potential damage to fish (Matejova et al. 2017).

CONCLUSION

Considering the hazardous effects of chemical her-
bicides on the natural environment and the rapid
growth of organic agriculture systems, bioherbicides
have been encouraged these days. Particularly, the use
of fungal pathogens for managing weeds has attained
remarkable progress in recent times with the devel-
opment of various bioherbicidal products possessing
different modes of action that perform well in various
situations. A major drawback of utilizing fungal patho-
gens for managing weeds is that they are highly sensi-
tive to environmental conditions, viz., temperature and
relative humidity, which facilitate conidia germination
and induce infection in the target weeds. To overcome
these issues, the toxins produced by such fungal patho-
gens can be exploited so that they are highly specific
only to the weed or group of weeds without negatively
impacting the neighbouring crops and other life forms
sustaining in that ecosystem. Further research has
to be taken up for utilizing the mycometabolites for
managing weeds, enhancing the efficacy of mycoher-
bicides by developing novel formulations and develop-
ing mycoherbicides possessing broad spectrum weed
management properties for effectively managing the
diverse weed biota. Moreover, advanced techniques
like RNA interference, genomics and metabolomics
can also be employed for effective weed management.
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