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Weeds are the main competitors to the crop for 
various resources like nutrients, moisture, light, 
space, etc. They are one among the biotic factors 
which cause severe yield reduction (45%), increase 
the cultivation cost and decrease the input effi-

ciency when compared to other biotic factors like 
insects (30%), diseases (20%) and other pests (5%). 
An economic loss of around 11 billion USD has 
been estimated due to the infestation of weeds in 
10 major crops of the Indian sub-continent (Gharde 
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Abstract: Weeds are the major menace to agriculture, which greatly impact crop growth and development, resulting in 
economic yield loss or crop failures. Therefore, it is indispensable to take up appropriate weed management practices to 
prevent the effects of weeds on crops. Chemical herbicides have immense potential for effective control of weeds, but, in 
the long run, the persistent nature of herbicides adversely affects the soil microbes and also that terrestrial and aquatic 
ecosystems. Bioherbicides are products derived from plant extracts, allelochemicals or microbes and their secondary 
metabolites with weed-suppressing abilities. Most microbial bioherbicides are based on fungi and its active ingredients, 
which successfully control weeds with different mode of actions. Moreover, the toxins or secondary metabolites the fun-
gi produce also possess herbicidal properties. So, exploring the fungal pathogens and their toxins for managing weeds 
seems to be a feasible and eco-friendly way for the management of weeds. There is a wider scope for utilizing fungi and 
their secondary metabolites as mycoherbicides, which have the potential to replace hazardous chemical herbicides in 
the near future. This review article mainly emphasizes the scope of mycoherbicides and explores the fungal secondary 
metabolites for eco-friendly weed control.
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et al. 2018). Crop production is highly challenged 
by weeds, which have to be managed appropriately, 
or else they will result in a huge decline in the yield 
of the crops. The survey conducted by several weed 
scientists revealed that around 10–100% of yield 
loss was observed in major crops grown in India 
owing to severe weed infestation (Rao & Chauhan 
2015). Due to the scarcity of labour in agricultural 
activities, chemical herbicides have become indis-
pensable in modern cropping and farming systems. 
Unfortunately, improper and irregular application 
of herbicides paved the way for several environ-
mental issues like herbicide resistance, groundwa-
ter contamination, soil health reduction, soil mi-
croflora exhaustion, loss of biodiversity, threat to 
human health, etc. So, to manage weeds effectively 
as well as to sustain the health of the ecosystem, 
the concept of biological control of weeds has to be 
adopted (Kubiak et al. 2022).

In the last four to five decades, many scientists 
have turned towards the biological approach of 
weed control through plant extracts, insects, patho-
gens, fish, etc. The trend of utilizing bioherbicides 
like allelochemicals secreted by plants and the use 
of fungal pathogens and their secondary metabo-
lites or mycotoxins for the successful management 
of weeds has been advancing in recent days. Exu-
dates of various plants and weeds have immense 
potential to limit the growth and development of 
various weeds. Likewise, numerous insects were 
also engaged in the management of some noxious 
and troublesome weeds. Various fungal patho-
gens naturally induce severe necrotic symptoms 
in diverse weed species. So, there is a possibility of 
inducing such infections in weeds through a  my-
coherbicidal approach. Several mycoherbicidal 
products have been registered and commercialized 
worldwide for weed management through an eco-
friendly approach. In the near future, growers may 
rely upon mycoherbicide formulations to control 
the weeds as a sustainable approach. They possess 
enormous potential to manage problematic weeds 
efficiently without harming the ecosystem. Simi-
larly, the culture filtrates and the toxins released by 
pathogens can also be utilized to manage the weeds 
irrespective of the environmental conditions. Sev-
eral mycotoxins have been identified which effec-
tively induce phytotoxicity on various weed spe-
cies. So, in this review, prime emphasis is given to 
the utilization of fungal pathogens and their sec-
ondary metabolites, which have the potential to 

act as an alternative to chemical herbicides for the 
effective and eco-friendly management of weeds, 
thereby sustaining the ecosystem.

ENVIRONMENTAL HAZARDS DUE TO 
CHEMICAL HERBICIDES

Due to the constraints of agricultural labour, time, 
and cost, the chemical method of weed control has 
become inevitable for the instant management of 
weeds (Barman & Varshney 2008). The application 
of chemical herbicides significantly contributed 
to maximizing agricultural production to support 
vast populations all over the world. However, in 
due course of time, the indiscriminate application 
of herbicides has resulted in the persistence of tox-
ic chemicals in soil and has posed serious hazards 
to the ecosystem.

Soil contamination. Soil comprises microorgan-
isms like bacteria, fungi, actinomycetes and mac-
roorganisms viz., earthworms, insects, spiders, 
nematodes, etc. This complex array of life forms is 
directly involved in various processes like decom-
posing residues, recycling and storing nutrients, 
and maintaining the soil structure, texture, stabil-
ity and degradation of soil contaminants. The her-
bicide sprayed on the weed not only gets contact 
with it but also with the soil and its surrounding 
ecosystem. This might affect the rhizospheric mi-
crobes, soil-borne pathogens, pests, and disease 
antagonists. Generally, bacteria have a better abil-
ity to decompose the herbicides when compared to 
fungi and actinomycetes (Lone et al. 2014). The ac-
tivity and count of soil microbes were encouraged 
in the soil deprived of herbicide application. Few 
studies recorded that the chemical nature, dosage, 
soil type, and sampling time played a major role in 
soil contamination by herbicides.

Application of herbicides viz., butachlor at the con-
centration 1.0 kg/ha, 2,4-D ethyl ester at the concentra-
tion 0.75 kg/ha and pyrazosulfuron ethyl at the concen-
tration 25 g/ha reduced the count of total heterotrophic 
bacteria (Latha & Gopal 2010). Adhikary et al. (2014) 
reported that a transient decrease in microbial popula-
tion was observed with the application of pendimeth-
alin (3 300 mL/ha) and oxyfluorfen (850 mL/ha). Spray-
ing acetochlor at different concentrations, viz., 1.25, 
1.50, 2.50, 3.125 and 5.0 L/ha, lowered the count of soil 
bacteria, fungi and actinomycetes (Tyagi et al. 2018). 
Kumar et  al. (2020) revealed that the application of 
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the herbicide bispyribac sodium (35 and 75 g/ha) de-
creased the soil microbial population, microbial bio-
mass carbon and the activities of soil enzymes. Ji et al. 
(2023) assessed the impact of atrazine on soil microbes 
and revealed that the application of atrazine lowered 
the population of soil microorganisms. Some findings 
have supported the fact that herbicide residues can 
serve as a carbon and energy source for microorgan-
isms, while other reports claim that herbicide residues 
result in devastating effects on soil biology and chem-
istry. However, in the long term, it may disrupt the 
soil's biochemical balance, thus reducing soil fertility 
and productivity (Hussain et al. 2009; Marin-Morales 
et al. 2013). The active ingredients present in the herbi-
cides affect the nitrite synthesis, nitrogen fixation and 
mycorrhizal process.

Aquatic toxicity. Because of the cumulative in-
crease in the use of herbicides for controlling the 
weeds, the residual chemicals find their destination 
in the nearby streams, lakes and underground water 
sources through leaching and runoff mechanisms 
and jeopardize the health of the marine and aquat-
ic ecosystem (Sondhia 2014). Furthermore, these 
chemical herbicides maximize the reproductive 
toxicity of various aquatic species (Yang et al. 2021).

Human health effects. Consumption of such 
chemicals results in severe health hazards for life 
forms, including humans, animals, etc. (Kubiak 
et  al. 2022). Likewise, Balderrama-Carmona et  al. 
(2020) disclosed that human beings exposed to 
chemical herbicides or consuming foods contami-
nated with residues of herbicides result in serious 
health hazards like infertility, neurotoxic effects, cy-
totoxicity, endocrine disruption, kidney problems, 
etc. Gupta (2022) stated that exposure to chemical 
herbicides affects the developmental processes and 
disrupts reproduction in humans and animals. 

BIOLOGICAL APPROACHES OF WEED 
MANAGEMENT

Usually, weeds are managed by physical/mechanical/
cultural/chemical/biological methods or their  com-
bination. Due to the shortage of agricultural labour, 
adverse effects of chemical herbicides, increasing rate 
of herbicide resistance, high cost involved in weed 
control methods, etc., have led to the preference for 
biological methods of weed control in the upcoming 
days. It has encouraged various agronomic scientists to 
formulate sustainable weed management approaches 

(Hershenhorn et al. 2016). Biological control suppress-
es weeds through biological agents or natural enemies 
(Figure 1). These agents may be plant pathogens (fungi, 
viruses, bacteria and nematodes), phytophilous arthro-
pods (insects and mites), fish (grass carp), birds (geese) 
and other animals (sheep) (Westwood et al. 2018).

There are two strategies for biological weed con-
trol: classical (inoculative) and inundation (aug-
mentation or bioherbicidal). The inoculative meth-
od deals with the introduction and exploitation of 
non-native or foreign agents to suppress an exotic 
aggressive weed in its new area of infestation, while 
the augmentation method deals with the exploita-
tion of indigenous or native bio-agents to manage 
weeds by amplifying their population intensities be-
yond usual levels (Aneja et al. 2017; Bo et al. 2020).

MYCOHERBICIDES

Microbe-based bioherbicides, which particularly in-
volve fungal pathogens and their secondary metabolites 
for the management of weeds, are termed mycoherbi-
cides. The steps involved in the development of biologi-
cal control of weeds with fungal pathogens are (i) ex-
tensive exploration for plant pathogens associated with 
the weeds, (ii) environmental studies and geographic 
features of the native or indigenous areas of the patho-
gen, which have a massive impact on disease infectivity 
(pathogen's ability to cause infection), intensity, viru-
lence (severity of the infection caused by the pathogen) 
and the ability to extend its range from one plant to the 
other has to be considered and (iii) determining the 
safety of the pathogen by observing its taxonomic po-
sition and by carrying out host specificity (range and 
variety of host species on which the pathogen can incite 
infection) studies (Gupta & Mukerji 2000). The ideal 
characteristics of a potential mycoherbicidal pathogen 
have been depicted in Figure 2. Various processes in-
volved in developing mycoherbicidal formulations with 
fungal spore suspension and fungal metabolites for 
managing weeds are illustrated in Figure 3.

POTENTIAL FUNGAL PATHOGENS FOR 
WEED CONTROL 

Application of conidial suspension of Curvularia 
lunata (strain B6) at the concentration 1 × 104 to 
1 × 106 per mL in rice fields at three leaf stage of 
the weeds effectively controlled Echinochloa crus-
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galli (Jing et  al. 2013). Spraying of spore suspen-
sion of the fungal pathogen, Bipolaris eleusines at 
the concentration 1 × 107 conidia per mL at three 
leaf stages resulted in severe mortality (73%) of 
E. crus-galli (Zhang et al. 2014). Inoculation of ne-
crotrophic pathogen Colletotrichum echinochloae 
(isolate B-48) spore suspension at the concentra-
tion 1 × 107 spores per mL on E. crus-galli signifi-
cantly reduced its fresh weight (Gu et al. 2023).

The fungal pathogens such as Alternaria alter-
nata, Fusarium oxysporum and Phoma herbarum 
caused a  severe infection on Trianthema portu-
lacastrum. Among them, spraying of P. herbarum 
registered the maximum mortality of T. portulac-
astrum (Ray & Vijayachandran 2013). Inocula-
tion of Gibbago trianthemae at the concentration 
5 × 104 spores per mL effectively controlled T. por-
tulacastrum (Mitchell 1988). Aneja et  al. (2013) 
revealed that applying a  conidial suspension of 
G. trianthemae at the concentration 2.2 × 105 co-
nidia  per mL to T. portulacastrum resulted in 

 Figure 1. Various biological approaches employed for the management of weeds
Bioformulations prepared from plant extracts, fungi, bacteria and viruses can be successfully utilized for managing weeds. 
Similarly, insects, nematodes and mites can also be introduced into areas of severe weed infestation to control the specific 
weed species. Integrating fishes and ducks in lowland ecosystems (paddy fields) assists in managing the aquatic weeds. 
Likewise, animals like sheep can be exclusively used for managing the weeds in grasslands and roadsides

Figure 2. Ideal characteristics of a potential mycoherbi-
cidal pathogen for effective weed management
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severe defoliation. Gaddeyya and Kumar (2015) 
sprayed the conidial suspension of G. trianthemae 
at the concentration 5 × 104 spores per mL supple-
mented with surfactant (tween 20 at the concen-
tration 0.02%) on T. portulacastrum and reported 
a  percentage disease index of 95–98%. The post-
emergence spraying of the liquid formulation of 
G. trianthemae at the concentration 10 × 106 spores 
per mL effectively controlled T. portulacastrum in 
maize crop (Sreeja 2022; Sreeja et al. 2022).

Isolates of Sclerotium rolfsii from Parthenium 
hysterophorus exhibited varied disease incidence 
percentages on P. hysterophorus and have the enor-
mous potential to be developed as a  mycoherbi-
cide (Shukla & Pandey 2008). In vitro and in vivo 
studies carried out by Kumar et al. (2009) revealed 
that Cladosporium sp. (MCPL 461) can potentially 
control Parthenium hysterophorus. Spore suspen-
sion of Cladosporium sp. at the concentration 1010 
to 1012 spores per mL sprayed on P. hysterophorus 
produced severe disease symptoms. Further, a 3% 
sucrose solution was added to the formulation 
to improve its mycoherbicidal activity, enhanc-
ing its efficacy. Application of spore suspension 
of the pathogen Alternaria alternata ITCC4896 

at the concentration 1 × 106 spores per mL effec-
tively controlled P. hysterophorus (Saxena & Ku-
mar  2010). Kaur and Aggarwal (2015) controlled 
the troublesome weed P. hysterophorus biologically 
by developing mycoherbicidal formulations of Al-
ternaria macrospora.

Application of conidial suspension of the pathogen 
Nimbya alternantherae at the concentration 1 × 105 
and 1  ×  106  conidia per mL effectively controlled 
Alternanthera philoxeroides under greenhouse and 
field conditions, respectively (Pomella et  al. 2007). 
Lima et al. (2010) developed a conidial suspension 
of Plectosporium alismatis, and application of the 
spore suspension at the concentration of 2 × 106 and 
2 × 107 conidia per mL produced the symptoms of 
leaf blight to the extent of 86% and 93%, respectively 
on Sagittaria montevidensis. Spore suspension of 
Phaeoacremonium italicum at the concentration 
1 × 106 spores per mL produced 100% and 90% dam-
age to Eichhornia crassipes around 144 h post inocu-
lation in detached leaf assay and whole plant assay 
respectively (Singh et al. 2016).

A spray concentration of 107 Alternaria alternata 
spores per mL in rapeseed oil emulsion formulation 
applied to Amaranthus retroflexus plants resulted in 

 

Figure 3. Steps involved in the development of mycoherbicidal formulation
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complete mortality of the plants at four-leaf stage 
(Ghorbani et al. 2000). Spore inoculum of the fun-
gal pathogen A. alternata (LC#508) sprayed at the 
concentration of 1.65 × 106 spores per mL caused 
mortality of Lantana camara in detached leaf as-
say, in vitro cut shoot assay and also in vivo bioas-
say (Saxena & Pandey 2002). The mycoherbicidal 
formulation prepared in canola oil emulsion (20%) 
with A. alternata spores at concentration 107  per 
mL effectively controlled Chenopodium album (Sid-
diqui et al. 2010).

Application of conidial suspension of Myrothe-
cium verrucaria at concentration 2 × 107 spores 
per mL coupled with the surfactant Silwet at 
the concentration 0.2% to the weeds viz., com-
mon purslane, horse purslane, spotted spurge and 
prostate spurge at 2–3  leaf stage resulted in ne-
crotic symptoms within 24  h of inoculation and 
after seven days of inoculation the pathogen killed 
almost 90–95% of both the purslane weed spe-
cies and 85–95% of both the spurge weed species 
(Boyette et  al. 2007). Lee et  al. (2008) inoculated 
the spore suspension of the fungal pathogen My-
rothecium roridum (F0252) at the concentration of 
6.5 × 106 and 2.5 × 107 spores per mL to the seeds 
of white clover and ladino clover and the spore 
suspension greatly inhibited the germination of 
seeds and severely affected the seedling growth 
of the weeds under in vitro conditions. The myco-
herbicidal activity of the pathogen was also evaluat-
ed under in vivo conditions, which displayed broad-
spectrum herbicidal properties. 

Fungal pathogen Phomopsis cirsii is highly path-
ogenic to the weed Cirsium arvense, causing the 
symptoms of dieback and stem canker, and the 
mycopathogen can be utilized as a  potential my-
coherbicidal agent against the host weed species 
(Leth et  al. 2008). Toh et  al. (2008) revealed that 
Lasiodiplodia sp. caused severe seedling mortality 
of Parkinsonia aculeata and can reduce the seed 
bank of P. aculeata. Cipriani et al. (2009) reported 
that Fusarium oxysporum is specific and extremely 
virulent to Orobanche ramosa and has the potential 
to be developed as a mycoherbicide. Application of 
spore suspension of the pathogen Aureobasidium 
pullulans at the concentration of 1016  spores per 
mL resulted in maximum infection of the weed 
Chromolaena odorata (Prashanthi & Kulkarni 
2005). Conidial suspension of Phoma multirostrata 
at concentration 1 × 108 conidia per mL effectively 
induced disease symptoms on Tridax procumbens 

to the extent of around 60–98% under laboratory 
conditions and 65–87% under greenhouse condi-
tions 15–20 days post inoculation of the spore sus-
pension (Srisuksam et al. 2022).

Since the 1960s, various microbial bioherbi-
cides have been registered and commercialized, 
of those majority of them were derived from the 
fungi such as Lubao, DeVine®

, Collego™ (Lock 
Down®), Casst™, ABG-5003, Dr. Biosedge®, Vel-
go®, BioMal®, Stumpout™, BioChon™, Hakatak®, 
Woad Warrior®, MycoTech™, Chontrol™ (Eco-
Clear™), Smoulder®, Sarritor™, Phoma®, Gib-
batrianth and Di-Bak Parkinsonia®. The fungal 
pathogen(s) involved and the target weed(s) of 
the respective mycoherbicides are illustrated in 
Figure 4. Camperico™, Organo-sol® (Kona™/Bio-
protec™), MBI-005 EP (Opportune™), D7® and 
Battalion Pro are bioherbicides based on bacteria. 
SolviNix™ is the only bioherbicide based on vi-
rus. The detailed description of the above-men-
tioned bioherbicides, like the time of registration 
and country, biocontrol agent involved, type of 
formulation, and their target weeds, were clearly 
specified by Cordeau et  al. (2016), Aneja et  al. 
(2017), Galea (2021) and Kremer (2023).

Several bioherbicidal products have been regis-
tered and commercialized to date, but only a  few 
products are available in the market. This might 
be due to low consumer demand, cost involved in 
the mass production of formulations, inconsistent 
performance under field conditions, etc. So, to de-
velop an effective and efficient mycoherbicide, the 
fungal pathogens possessing high virulence and the 
determinants of virulence must be recognized. The 
selected fungal agent should be well prepared to fit 
and adapt to the field conditions.

SUCCESSFUL EXAMPLES OF 
BIOLOGICAL CONTROL OF WEEDS

Management of Striga hermonthica in Kenya. 
Striga hermonthica, a  partial root parasitic weed, 
depends on cereal crops for nourishment. Due 
to the severe infestation of this parasitic weed in 
sub-Saharan Africa, there was a massive reduction 
in the yield of crops, especially maize, which ex-
perienced severe impact due to the infestation of 
S. hermonthica and sometimes total crop failures 
have also been observed. The biological approach 
of utilizing the fungal pathogen, Fusarium oxyspo-
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rum  f.  sp. strigae, was undertaken to manage the 
weed effectively. This pathogen selectively attacks 
Striga sp. without causing any effects on crops 
like maize, pearl millet, sorghum, rice, cowpea, 
groundnut, cotton, fonio and okra. Nevertheless, 
some plants of Solanaceae were susceptible to it. 

The concept of amino acid toxicity was utilized 
here, and the amino acids that exclusively inhibit 
S. hermonthica but not maize were identified; they 
are tyrosine and leucine. The specific strains of the 
fungal pathogen F. oxysporum that overproduce 
the amino acids (tyrosine and leucine) were se-
lected. In addition, the variants that overproduce 
methionine were also selected as the amino acid 
methionine gets converted into ethylene due to the 
activity of soil microbes, which assists in the ger-
mination of Striga. Three selected strains of fungal 
pathogen (Leu2a, Z6a and Z5a) that overproduce 
the amino acids viz., leucine, methionine and tyro-
sine were cultured individually on potato dextrose 
agar medium on which sterile wooden toothpicks 
were placed. The fungi grew and ramified on the 
toothpicks. Then, they were dried aseptically in 
a laminar flow cabinet, and after complete drying, 
the trio of toothpicks (Leu2a, Z6a and Z5a) were 
stored in sterile straws. This 1:1:1 ratio of a trio of 
toothpicks with fungus, Fusarium oxysporum f. sp. 
strigae was denoted as Foxy T14. 

The toothpick containing the fungus was de-
livered to the farmers, and they inoculated it in 
cooked and cooled pearled rice (ideal substrate to 
support the mycelial growth) to provide fresh on-
farm inoculum of the fungal pathogen. Both the 
cooked rice and toothpick were placed in the ster-
ile container and were shaken twice daily for three 
days. This technology was tested on 500 farms in-
fested with Striga in Western Kenya. It has been re-
ported that a drastic reduction in the infestation of 
Striga to the extent of 80% and 92% in the long and 
short seasons, respectively, subsequently enhanced 
the yield of maize by 56.5% and 42% in the long and 
short seasons, respectively. Here, the yield of maize 
grown in the short season declined due to drought. 
Additionally, it has been reported that the Foxy 
T14 lines had not produced toxins, conferring its 
non-toxic nature (Nzioki et al. 2016).

Management of Parkinsonia aculeata in 
Northern Australia. P. aculeata populations 
were massive in the Northern Australian region, 
possessing a serious threat to the ecosystem. So, 
to manage them, a bioherbicidal product (Di-Bak 

Parkinsonia®) comprising of three endophytic 
fungi viz., Lasiodiplodia pseudotheobromae, 
Macrophomina phaseolina and Neoscytalidium 
novaehollandiae was used. Di-Bak Parkinsonia is 
a capsule form of woody weed bioherbicide. It was 
successfully directed into the stem of the woody 
plants manually using an applicator device. The 
successful implant of the bioherbicide capsule 
resulted in the development of dieback symp-
toms. After a period of successful establishment, 
it progressed through the neighbouring untreated 
population, causing an enormous decline in the 
infestation vigour of P. aculeata (Galea 2021).

CELL-FREE CULTURE FILTRATES WITH 
HERBICIDAL VALUES

Cell-free culture filtrates have numerous advan-
tages, which minimize the limitations attributed 
to conventional microbe-based products, espe-
cially on the shelf life and viability of the conidial 
suspension. Pathogens secrete a  wide range of 
bioactive molecules and secondary metabolites. 
Such metabolites represent a  large pool of com-
pounds that can enhance crop growth and crop 
protection (Izurdiaga et  al. 2023). Quereshi and 
Pandey (2007) extracted the cell-free culture ex-
tract of Phoma sp. FGCCW#54 which exhibited 
excellent herbicidal properties against Partheni-
um hysterophorus.

Similarly, cell-free culture filtrate of the fungal 
pathogen Phoma herbarum (FGCCPH#27) pro-
duced phytotoxic symptoms on Parthenium hys-
terophorus in shoot cut, seedling and detached 
leaf bioassays which revealed that the fungal 
pathogen has immense potential to produce sev-
eral phytotoxic compounds with promising her-
bicidal values (Singh et  al. 2013). The noxious 
weed P. hysterophorus can be biologically man-
aged by exploiting the cell-free culture extract of 
Alternaria macrospora MKP1 and Alternaria sp. 
PMK2 (Kaur et al. 2016; Kaur & Aggarwal 2016). 
Singh and Pandey (2019a) reported that maxi-
mum disease ratings were observed in treating 
21 days old cell-free culture filtrate of Fusarium 
sp. (FGCCW#16) at 100% concentration on Par-
thenium hysterophorus. Singh et al. (2010) stated 
that the cell-free culture filtrate of Colletotrichum 
dematium FGCC#20 produced severe phytotoxic 
symptoms in P. hysterophorus.
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Cell-free culture filtrate of the Alternaria alter-
nata LC-110 and LC-104 strains induced phytotox-
ic symptoms on Lantana camara due to the toxic 
metabolites produced by the pathogen (Saxena 
& Pandey 2000). The 28-day-old cell-free culture 
extract of Phoma herbarum (FGCCW#18); 100% 
concentration resulted in maximum mortality and 
phytotoxic symptoms on Xanthium strumarium 
in the shoot cut and seedling bioassay (Singh & 
Pandey 2019b). Helminthosporium (FGCCW#53) 
pathogen cell-free culture filtrate exhibited excel-
lent herbicidal potential against Sida acuta, caus-
ing severe phytotoxicity (Singh & Pandey 2021). 
The aqueous extract of Macrophomina phaseolina 
culture filtrate inhibited the seed germination of 
Convolvulus arvensis, Malva neglecta and Sorghum 
halepense. Moreover, the in vitro and in vivo stud-
ies also revealed that the aqueous extract of Mac-
rophomina phaseolina culture filtrate produced 
phytotoxic damage to Malva neglecta, Convolvu-
lus arvensis, Poa pratensis and Sorghum halepense 
(Theer et al. 2021).

SECONDARY METABOLITES

Plant pathogens synthesize and release various 
phytotoxins, which obstruct and intrude on plant 
metabolism, causing necrotrophic effects that 
might extend up to the mortality of plants. These 
phytotoxins possess a wide range of actions requir-
ing a direct interface with a specified plant compo-
nent like membrane or enzyme receptor, etc. (Vey 
et al. 2001). The absence and alteration of such re-
ceptors may not produce phytotoxic effects. So, the 
phytotoxins and their targets are indispensable fac-
tors affecting the pathogen's host range (Hoagland 
et al. 2007). These metabolites exhibit phytotoxicity 
at diverse stages of plant growth and development. 
Various classes of fungal phytotoxins are presented 
in Figure 5. Most of the phytotoxic fungal toxins 
belong to the classes of terpenoids (Bipolaroxin, 
Chenopodolin, Ophiobolins, Prehelminthosporol), 
polyketides (Ascochytine, De-O-methyldiaporthin, 
Monocerin, Putaminoxin), nitrogenous metabo-
lites (Ascosonchine, Cytochalasins, Fumonisin B1, 
Fusaric acid, β-nitropropionic acid, Tryptophol) 
and phenols and phenolic acids (Curvulin) (Xu et al. 
2021; Bendejacq‐Seychelles et al. 2024). The explo-
ration for alternate ways of weed control resulted 
in the utilization of phytotoxic fungal toxins or sec-

ondary metabolites, and they were regarded as one 
of the most efficacious and eco-friendly approaches 
to weed management (Evidente 2023; Bendejacq‐
Seychelles et al. 2024). These phytotoxic fungal me-
tabolites play a vital role in the biological control of 
weeds by causing chlorosis, necrosis, wilting, halt-
ing the germination of seeds and growth inhibition 
(Liu & Li 2004). These mycometabolites possess 
immense herbicidal values and can manage weeds 
through several mechanisms of action like altering 
the metabolic processes, triggering the production 
of ROS, ABA, ethylene, inhibiting germination and 
growth, etc (Radhakrishnan et al. 2018). 

Phomentrioloxin, a  mycotoxin isolated from the 
liquid culture of the fungal pathogen Phomopsis sp., 
exhibits immense mycoherbicide potential for man-
aging Carthamus lanatus. The toxin causes necrotic 
spots on leaves when applied to the host and non-
host plants at a  concentration of 6.85  mM (Cim-
mino et al. 2012). Fungal pathogen Phyllosticta cir-
sii isolated from Cirsium arvense produces various 
phytotoxic metabolites with promising herbicidal 
properties when subjected to liquid culture. From 
the liquid culture of the pathogen, the compounds 
phyllostictines A-D were isolated. When tested on 
the host plant by leaf puncture assay, phyllostic-
tine  A  was highly toxic, whereas phyllostictines B 
and D caused moderate phytotoxicity, and phyllos-
tictine C had no effect (Evidente et al. 2008a).

Additionally, Evidente et al. (2008b) also reported 
that the further purification of the extract result-
ed in two toxins viz., phyllostoxin and phyllostin. 
When assayed on the punctured leaves of Cirsium 
arvense, phyllostoxin exhibited more phytotoxic-
ity, causing necrotic symptoms, whereas phyllostin 
displayed no phytotoxicity. Likewise, several phy-
totoxic mycometabolites are involved in managing 
various weeds. Various toxins produced by differ-
ent Alternaria sp. and their target weeds are illus-
trated in Figure 6. The metabolites of other myco-
pathogens, their target weeds and their mode of 
action are presented in Table 1.

NANOFORMULATIONS OF 
MYCOHERBICIDES

The controlled release of phytotoxic metabo-
lites can be accomplished using nanoformulation 
technology. The toxin or metabolite can be cou-
pled with a nanocarrier to protect it from degrada-
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Phytotoxin Fungal 
pathogen Target weed Mode of action Reference

Ascaulitoxin Ascochyta 
caulina Chenopodium album potent growth inhibiting 

molecule
(Evidente et al. 1998; 
Cimmino et al. 2015)

Ascochytine Ascochyta 
hyalospora Chenopodium album electrolyte leakage (Venkatasubbaiah 

& Chilton 1992)

Ascosonchine Ascochyta 
sonchi

Sonchus arvensis, 
Salvia officinalis, 

Euphorbia helioscopia, etc.

phytotoxicity producing ne-
crotic circular lesions (Evidente et al. 2004)

Bipolaroxin Bipolaris 
cynodontis

Cynodon dactylon, 
Sorghum halepense, etc.

zonate lesions and flecking of 
leaves, elevated light 
intensities enhance 

the severity of symptoms

(Sugawara et al. 1985)

Cornexistin Peacilomyces 
variotii

Echinochloa crus-galli, 
Digitaria sanguinalis, 
Sorghum halepense, 

Solanum nigrum, etc.

Inhibits the activity of amino 
transferase at higher 

concentrations only after 
incubating it in a plant cell 

extract

(Nakajima et al. 1991; 
Duke & Dayan 2011)

Chenopodolin Phoma 
chenopodicola

Cirsium arvense, Setaria viride 
and Mercurialis annua

produces necrotic 
lesions (Cimmino et al. 2013)

Curvulin Drechslera 
indica

Portulaca oleracea 
and Amaranthus spinosus

produces necrotic 
symptoms (Kenfield et al. 1989)

Cyperine Ascochyta 
cypericola Cyperus sp.

at higher concentrations, it 
inhibits the activity of proto-

porphyrinogen oxidase 
enzyme

(Stierle et al. 1991; 
Duke & Dayan 2011)

Cytochalasins
(Z1, Z2, Z3, B, F, T)

Pyrenophora 
semeniperda

Bromus tectorum and various 
genera of grasses reduction in root growth (Cimmino et al. 2015)

De-O-methyldia-
porthin

Drechslera 
siccans

Echinochloa crus-galli, 
Amaranthus spinosus 

and Digitaria sp.

produces necrotic 
symptoms (Hallock et al. 1988)

Fumonisin B1
Fusarium 

moniliforme Datura stramonium

disturbs the sphingolipid 
metabolism by inhibiting the 
activity of ceramide synthase 

enzyme

(Abbas et al. 1991)

Fusaric acid Fusarium 
nygamai Striga hermonthica causes chlorosis, necrosis (Capasso et al. 1996)

Hyalopyrone Ascochyta 
hyalospora

Chenopodium album, 
Sida rhombifolia, Senna 

obtusifolia, Ipomoea purpurea, 
Sorghum halepense, 
Agrostis, Ambrosia, 

Datura stramonium, etc

electrolyte leakage (Venkatasubbaiah 
& Chilton 1992)

Macrocidins A, B Phoma 
macrostoma Several broad-leaved weeds bleaching of leaves 

and chlorosis (Graupner et al. 2003)

Monocerin Exserohilum 
turcicum

Sorghum halepense 
and Cirsium arvenses

Root necrosis and inhibits 
root elongation

(Robeson & Strobel 
1982)

β-nitropropionic 
acid Septoria cirsii Cirsium arvense

Inhibits seed germination, 
root elongation subsequently 

followed by chlorosis 
and necrosis

(Hershenhorn 
et al. 1993)

Table 1. Fungal metabolites possessing promising herbicidal properties
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Phytotoxin Fungal 
pathogen Target weed Mode of action Reference

Ophiobolins
(A, B,J, 6-epi-
-Ophiobolin, 
3-Anhydro-6-epi-
-ophiobolin A)

Drechslera 
sorghicola

Ophiobolin A is highly phyto-
toxic to several monocots 

and dicots whereas 
6-epi-ophiobolin exhibits 

reduced toxicity
inhibition of seed 

germination, electrolyte 
leakage, alters 

the permeability of cell 
membrane, causes 

necrotic lesions

(Evidente et al. 2006a)

3-Anhydro-6-epi-ophiobolin A 
is phytotoxic to Setaria viridis 

and Diplotaxis erucoides
Ophiobolin B is highly toxic 
while ophiobolin J is slightly 

toxic to  Bromus sp. 
and Hordeum marinum

(Evidente et al. 2006b)

Prehelminthos-
porol Bipolaris sp. Sorghum halepense produces necrotic spots 

and lesions
(Pena-Rodriguez 

et al. 1988)

Putaminoxin Phoma 
putaminum

Erigeron annuus, 
Mercurialis annua, etc. chlorosis and necrosis (Evidente et al. 1995)

Pyrenolide A Ascochyta 
hyalospora Chenopodium album electrolyte leakage (Venkatasubbaiah 

& Chilton 1992)
trans-4-ami-
noproline

Ascochyta 
caulina Chenopodium rubrum produces large necrotic lesions (Evidente et al. 2000)

Tryptophol Drechslera 
nodulosum Eleusine indica produces necrotic lesions (Sugawara & Strobel 

1987)

Table 1. to be continued

tion (Hershenhorn et al. 2016). Namasivayam et al. 
(2015) reported that the coating of chitosan nano-
particles on the metabolite extracts of Fusarium 
oxysporum effectively controlled Ninidam theen-
jan. Nanoformulations of biochemical herbicides 
enhance the biocontrol efficacy due to the massive 
surface area exhibited by the nanoparticles, which 
in turn requires a  lower volume of bioherbicide, 
thus intensifying the concentration in a  smaller 
package at a lower cost (Pallavi et al. 2017).

CHALLENGES FOR THE DEVELOPMENT 
OF MYCOHERBICIDES

There are various challenges ahead for the suc-
cessful development of a mycoherbicide. It may be 
due to technological, environmental, biological or 
commercial constraints (Auld et  al. 2003). Tech-
nological constrictions like formulation type and 
mass production highly affect the development of 
mycoherbicide. With respect to the foliar applica-
tion of fungal pathogens, the factors, viz., mois-
ture, temperature, extent of leaf wetness, etc., sig-
nificantly influence the germination and the ability 
to produce infection structures (Boyetchko et  al. 
2002). Since most pathogens require extended pe-

riods of leaf wetness or high humidity, i.e., dew pe-
riod, to cause maximum infection, using mycoher-
bicides through foliar spray has been restricted to 
the irrigated areas. A  major limitation attributed 
to the solid formulation is that they must wait for 
the suitable conditions required for the fungus to 
grow and induce infection vigorously. The weather 
factors such as temperature, relative humidity are 
the major constraints which severely influence the 
efficacy of mycoherbicides, as the fungal patho-
gens require a specific environmental condition to 
induce infections. 

Regarding biological constraints, resistance and 
host variability are the prime limitations. To sort 
out the issues of host range and to augment the ef-
fectiveness of mycoherbicides, various efforts were 
made to amalgamate several host-specific patho-
gens for a  single application. Accordingly, various 
efforts have been made to control closely related 
weeds by exploiting the fungal pathogens that pos-
sess a  broad spectrum and extended host ranges 
(Rosskopf et  al. 1999). In this multiple-pathogen 
strategy, two or more fungal pathogens were com-
bined at ideal inoculum levels and applied over the 
target plants as pre- or post-emergence applications 
(Charudattan & Dinoor 2000). The practicability of 
this method has been proved in greenhouse con-
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ditions as well as in field conditions where seven 
grassy weeds were successfully controlled by the 
combined application of fungal pathogens viz., 
Drechslera gigantea, Exserohilum longirostratum, 
and E. rostratum as an emulsion (Chandramohan 
et al. 2000). Likewise, the fungal pathogens Colle-
totrichum dematium, Phomopsis amaranthicola, 
Alternaria cassia and Fusarium udum were com-
bined to kill three different species of weeds (Chan-
dramohan & Charudattan 2003).

Commercial constraints like the cost involved 
in the production of mycoherbicide and the mar-
ket potential of mycoherbicides is too limited, 
so the companies are reluctant to come forward 
to develop mycoherbicidal products (Auld et  al. 
2003). From an economic perspective, a mycoher-
bicide controlling numerous closely related weeds 
(i.e., broad spectrum) would be encouraged (Duke 
2024). The production costs of the mycoherbicides 
should be minimized and parallelly maintain the 
virulence of fungal pathogens with extended shelf 
life through efficient formulations and advanced 
application techniques (Golijan et al. 2023).

RISKS ASSOCIATED WITH 
MYCOHERBICIDES

The major risks associated with the utilization of 
mycoherbicides comprising of either fungal spores 
or their secondary metabolites are as follows.

Detrimental effects on non-target plants due to 
the introduction of non-native organisms. The my-
coherbicidal formulations may also affect the main 
and subsidiary crops due to the introduction of non-
native organisms. One such example was the release 
of the fungal pathogen Puccinia melampodii (isolated 
in Mexico) in Australia for the management of noxious 
and allergic weed Parthenium hysterophorus through 
an integrated approach even though the pathogen has 
the potential to sporulate on various sunflower and 
marigold cultivars (Evans 2000). However, over time, 
the Australian Quarantine and Plant Inspection Ser-
vice reported that the pathogen, besides controlling 
the weed, caused serious damage to the non-target 
plants (Hoagland et al. 2007).

Mammalian and aquatic toxicity. Besides effectively 
controlling the target weeds, the toxins or metabolites 
produced by such pathogens might possess toxicity to 
humans, animals, etc. Foods and feedstuffs are habitu-
ally contaminated with the fungal toxicants consumed 

by humans as well as other animals, thus subsequently 
contracting diseases (Zain 2011). Aflatoxin B1 and tox-
ins derived from Fusarium sp. were also reported to 
cause potential damage to fish (Matejova et al. 2017).

CONCLUSION

Considering the hazardous effects of chemical her-
bicides on the natural environment and the rapid 
growth of organic agriculture systems, bioherbicides 
have been encouraged these days. Particularly, the use 
of fungal pathogens for managing weeds has attained 
remarkable progress in recent times with the devel-
opment of various bioherbicidal products possessing 
different modes of action that perform well in various 
situations. A major drawback of utilizing fungal patho-
gens for managing weeds is that they are highly sensi-
tive to environmental conditions, viz., temperature and 
relative humidity, which facilitate conidia germination 
and induce infection in the target weeds. To overcome 
these issues, the toxins produced by such fungal patho-
gens can be exploited so that they are highly specific 
only to the weed or group of weeds without negatively 
impacting the neighbouring crops and other life forms 
sustaining in that ecosystem. Further research has 
to be taken up for utilizing the mycometabolites for 
managing weeds, enhancing the efficacy of mycoher-
bicides by developing novel formulations and develop-
ing mycoherbicides possessing broad spectrum weed 
management properties for effectively managing the 
diverse weed biota. Moreover, advanced techniques 
like RNA interference, genomics and metabolomics 
can also be employed for effective weed management.
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