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Abstract: Effective weed management relies on frequent field monitoring, which is difficult to perform in vast areas.

Integrating red-green-blue, thermal, hyperspectral, and multispectral sensors with unmanned aircraft systems and ar-

tificial intelligence ensures better results in managing the weed menace. Since India depends largely on agriculture, it is

still a long way from implementing more advanced weed management methods. Mapping and surveillance of weeds in

croplands by employing remote sensing will lead to varied herbicide application rates, thus reducing its overuse. This

study reviews the practical application of remote sensing methods and unmanned aircraft systems in weed mapping.
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In the 21* century, humans face the key challenge
of providing food to the growing global population
along with greater concern on preserving the envi-
ronment. Biotic threats like weeds, insects, and dis-
eases can influence crop yield, quality, and opera-
tional cost (Sathishkumar et al. 2022). Of all these
factors, weeds reduce crop yield the most (Esposito
et al. 2021). Weeds compete for sunlight, space, nu-
trients, water, and carbon dioxide with crops, reduc-
ing crop yield (Pazhanivelan et al. 2015). Combined,
weeds, insects, and pathogens account for a 20-40%
reduction in global crop productivity (Sharma et al.
2017). Weed interaction causes drastic yield reduc-
tion in all important food and non-food crops such

as onion (90%), maize (40%), soybean (37%), rice
(37%), cotton (36%), potato (30%) and wheat (23%)
(Denisow-Pietrzyk et al. 2019). Numerous weed-
management methods can reduce these detrimental
effects, including hand weeding, herbicides, sus-
tainable strategies, machines, and artificial intelli-
gence (Al) (Roslim et al. 2021).

The global population is increasing exponentially
and is estimated to reach 9 bil. by 2050. To meet
the huge demand for food for the increasing popula-
tion, agriculture needs to be revolutionised by using
newer technologies (Jin et al. 2022). India is the most
populated (1.42 bil.) country, with a current food
grain production of 329.7 mil. t and a projected pop-
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ulation of 1.67 bil. by 2050. To provide food to this
growing population, modern technologies should be
adopted. While India depends on agriculture for its
livelihood, it has to adopt modern technologies for
maximizing the food production. Unmanned air-
craft systems (UAS), photogrammetry, and remote
sensing are being used by developed nations in pre-
cision agriculture (Colomina & Molina 2014).

Although weeds grow in patches, traditional practic-
es involve managing the overall field. Spot application
of herbicides reduces input wastage, whereas their ap-
plication in large areas manually is impractical (Zhang
et al. 2022). Minimising herbicide usage to reduce
environmental impact while sustaining production
and quality is a key challenge. One probable approach
to meet this goal is site-specific weed management
(SSWM), although reliable weed-recognition strate-
gies are required (Louargant et al. 2018). Herbicide
application at variable rates can be achieved by rec-
ognition of weed patches in croplands using remote-
sensing technology (Oliveira et al. 2020).

To achieve SSWM, the integration of newer
technologies like drones, Al robotics, and sensors
is required (Huang & Reddy 2015). Robotic weed
management depends on the reliable detection
of weeds in crop fields (Hu et al. 2021a). Robots
have thus far been employed only in small farming
systems (Oliveira et al. 2020).

Manual weed detection makes it difficult to mim-
ic weeds at earlier stages of crops. Using spectral
difference, UAS fitted with sensors could recognise
the mimic weeds (Berni et al. 2009). UAS image-
ry helps better categorise weeds in earlier stages
where weed and crop have similar morphology
(Roslim et al. 2021). By employing UAS and remote
sensing, researchers can obtain real-time, high-res-
olution data that enable proactive decision-making
and targeted interventions (Singh et al. 2020). Deep
learning neural networks could be used in the ma-
chine learning subset of automated sprayers to lo-
cate weeds and to apply herbicides precisely in the
individual map cells (Jin et al. 2022). This review
overviews precision weed mapping using advanced
drones, sensors, and deep learning.

UNMANNED AIRCRAFT SYSTEMS AND
THEIR TYPES

An unmanned aircraft system is an aircraft
that can fly without a pilot and is controlled
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by a receiver. UASs are the main choice for quick
and precise in situ data collection (Mancini et al.
2019). Based on the sensor fixed on the UAS, it
may be used for varied purposes (Esposito et al.
2021; Pazhanivelan et al. 2023). Unlike satellites,
UAS will offer only spatial and temporal resolution
(Manfreda et al. 2018).

Saeed et al. (2018) categorised UAS into Hori-
zontal Take-off and Landing (HTOL), and Vertical
Take-off and Landing (VTOL) types. VTOL is fur-
ther subdivided into single-rotor and multi-rotor
types (Darvishpoor et al. 2020).

Horizontal Take-off and Landing (HTOL).
Horizontal Take-off and Landing types of UAS have
fixed wings. It is otherwise known as a fixed-wing
aircraft (Figure 1). It uses its flaps/wings to pro-
duce lift due to forward movement (Hassanalian et
al. 2017). The payload capacity of fixed-wing air-
craft is comparable to that of rotary-wing aircraft.
Fixed-wing aircraft are ideal for data acquisition
in large areas and are fitted with higher-resolution
cameras for better mapping (Barber et al. 2006; Ve-
lusamy et al. 2022).

The fixed-wing platform has lower operating
costs, increased flight endurance, and the ability
to operate under adverse conditions (Panagiotou
& Yakinthos 2020). Flying at high speed makes
concurrent weed detection, decision-making, and
precise herbicide application problematic. Fur-
thermore, it needs a catapult launcher or long run-
way to reach the perfect take-off speed (Darvish-
poor et al. 2020).
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Figure 1. Fixed-wing drone (Radoglou-Grammatikis et
al. 2020)
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Figure 2. Different types of HTOL drones (Radoglou-
Grammatikis et al. 2020)

Vertical Take-off and Landing (VTOL). Verti-
cal Take-off and Landing platforms are equipped
with propellers and do not need a runway. VTOL
is also known as rotary wing aircraft due to its
propellers. These types of UASs employ their pro-
pulsion for take-off and landing (Darvishpoor et
al. 2020). Rotary-wing aircraft are further clas-
sified based on their number of propellers into
the mono copter, tri copter, quadcopter, hexacop-
ter, octocopter, etc. Figure 2 shows different types
of VTOL drones. The ability of VTOL to hover
at a place and perform quick movements ena-
bles meticulous field inspections. Using VTOL,
developing weed maps with greater resolution is
possible (Xiang et al. 2011). Limited payload and
shorter endurance are major drawbacks of rotary-
wing platforms.

ADVANCEMENTS IN SENSOR
TECHNOLOGIES FOR PRECISION WEED
MAPPING

Conventional methods of weed management,
i.e. manual and chemical strategies, are laborious
and costly. To overcome labour shortage, advanc-
es in weed management are essential. Automated
weed detection and visualisation are crucial steps
for providing alternatives to these traditional ap-
proaches (Li et al. 2021).
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In precision farming, creating weed maps is
the main function of UAS. Tracking and mapping
weeds in crop stands are necessary to implement
precision agriculture approaches, i.e. patch spray-
ing (Pignatti et al. 2019). Remote-sensing imageries
offer information on weed infestation in the crop
stand by examining the variation in spectral prop-
erties of weeds and crops, which helps in need-
based herbicide application. Weed mapping is
successfully made by detecting crops and weeds’
reflectance values. Each type of crop has specific
reflectance values. Thus, it differentiates crops and
weeds, and weed mimicry has been avoided (King-
ra et al. 2016).

Developments in sensor potentialities have up-
graded the reliability of weed detection and classi-
fication. Dynamic algorithms and object-detecting
sensors utilise neural networks and Al for real-
time image processing and decision-making (Thorp
& Tian 2004; Sulaiman et al. 2022).

Enhancing the efficiency of agricultural inputs
has become a crucial challenge in crop production.
Recently, spectral imaging has become an adaptive
tool to evaluate crop stands and assess herbicide
needs (Reckleben 2014). Spectral imaging sensors
are classified as red-green-blue (RGB), multispec-
tral, hyperspectral, and thermal sensors. Some im-
age-capturing sensors used in precision agriculture
are listed in Table 1.

RGB imagery. The images with an array of red-
green-blue bands produce the RGB imagery (Prey et
al. 2018; Singh et al. 2019). RGB imagery is the vis-
ible spectrum image that utilises the light spectrum
of 390-720 nm (Esposito et al. 2021). RGB imag-
ing greatly enables weed species detection and dif-
ferentiation (Lambert et al. 2018). Cameras hav-
ing a resolution of 3—12 megapixels are employed
to identify and differentiate the weed species ac-
cording to their RGB colours and depth informa-
tion of the plant size, cotyledons, leaf shape, leaf
count, colour, branch, flower, fruit, and trunk
(Rosell-Polo et al. 2015; Madsen et al. 2020). Us-
ing RGB imageries, vegetation indices, i.e. Green/
Red Vegetation Index (GRVI), Excessive Greenness
(ExQG), and Greenness Index (GI) can be computed
with higher accuracy (Xue & Su 2017).

Using RGB imageries, Pahikkala et al. (2015)
found Avena sativa admixed with various weed
species. With the help of computer vision, RGB im-
ages were used in deep-learning neural networks
to differentiate weed species and crops (Roslim et



Review

Plant Protection Science, 61, 2025 (1): 44-55

Table 1. Image-capturing sensors used in agriculture
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Sensors Attributes

Opportunities

Drawbacks

Faster to recognise through visual
inspection;
affordable and miniature in size;
lower Unmanned aircraft system (UAS)
payload; more clarity

Dimensions, colour,
form, edges, and
texture

RGB (Jack et al. 2019)

Look and geometri-
cal characteristics,
normalized
difference vegetation
index (NDVI)

Multispectrum
(Su et al. 2020)

Utilisation of thousands of narrow
continuous spectral bands;
multiple dimension data;
recognising improved features;
gathers the entire dataset

Hyperspectrum
(Hafeez et al. 2022)

Ratio vegetation
index (RVI), NDVI

Feasible to gather more spectral ranges;
offers enough details;
utilisation of near infrared (NIR);
provision of vegetation index data

There are only 3 bands;
challenging to identify more traits;
hard to find abnormalities in datasets;
demands high-resolution image

Highly expensive;
photos will be captured depending
on the weather;
pictures have some ideal limit
of resolution

Desires modern computers;
expensive and intricate;
hard to apply;
Enormous data storage is required;
over payload

al. 2021). Data obtained from the RGB sensors can
be processed using vegetation index, deep learn-
ing methods, point clouds, and statistical methods
(Hassler & Baysal-Gurel 2019).

With the help of RGB bands, developing weed
maps for small crops has been challenging due
to the spectral and morphology similarities be-
tween weeds and crops during their early devel-
opment stages (Lopez-Granados 2011). Employ-
ing pixel-based image analysis will resolve these
resemblances. Pixel-based image analysis also
has some limitations, which can be cleared using
object-based image analysis.

Red-green-blue imageries have some limitations:
they perform better in circumstances where plant
species vary in colour or morphology, and they of-
fer only limited spectral data with the help of the
three bands (red, green and blue) (Zhang et al.
2019). The quality of RGB imagery will deteriorate
with reduced light (Rosell-Polo et al. 2015).

Multispectral imagery. Multispectral imagery
refers to a situation where the number of spectral
bands is 3—10 or fewer in each pixel (Roslim et
al. 2021). Multispectral imaging involves acquir-
ing pictures at a specified spectrum range utilising
sensors that record the reflected radiation through
a single optical pathway (Chen et al. 2002). Aerial
multispectral imaging provides detailed and com-
prehensive data that was not acquired using RGB
sensors. Even though it is invisible to the human
eye, it delivers critical information about species-
specific characteristics (Singh et al. 2019; Mink et
al. 2020). Reliable weed maps are often generated
by remote sensing utilising multispectral aerial
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imagery, especially during matured weed stages
(Lopez-Granados 2011).

Many studies have indicated the potential of mul-
tispectral visuals on weed mapping. Stroppiana et
al. (2018) employed UAS with a multispectral cam-
era to map vegetation and weeds in cropland. Using
multispectral imagery, healthy and diseased leaves
could be distinguished according to fluctuations
in reflectance at 670, 800, and 990 nm (Singh et
al. 2019). Feyaerts and Van Gool (2001) employed
multispectral imagery and neural networks to dif-
ferentiate Beta vulgaris from five distinct weed
species. Kim et al. (2001) employed multispectral
fluorescence imaging to find the movement of her-
bicides within leaves through diffusion.

Nelson and Khorram (2018) used a Landsat-8 sat-
ellite (NASA, USA) that produces multispectral im-
ages with 11 bands, of which most of the bands have
a resolution of 30 m except band 8-panchromatic
(15 m), and bands 10 & 11 — TIRS 1 & 2 (100 m).

In a citrus orchard, Ye et al. (2007) evaluated
the efficiency of multispectral weed mapping and
the accuracy of 99.07%. The high spatial resolution
of multispectral imageries, in combination with
ground observation, resulted in species-level dif-
ferentiation of weeds (Strecha et al. 2012). To ex-
amine weed categorisation by using multispec-
tral drone images, Che'Ya et al. (2021) performed
a study in which high-resolution multispectral data
resulted in accurate weed detection.

However, because few spectral bands are employed
in multispectral imaging, it is less effective in dis-
tinguishing crops and weed species. Another major
limitation of multispectral imagery is its low spectral



Review

Plant Protection Science, 61, 2025 (1): 44-55

resolution (Ahmed et al. 2016). These limitations can
be overcome by using hyperspectral imagery.

Hyperspectral imageries. Multispectral image-
ries fail to distinguish weeds at the species level
due to their wider bandwidth. Hyperspectral aerial
imaging has emerged as a novel remote-sensing
technique to overcome this issue. Hyperspectral
imaging sensors equipped with UAS are a valuable
tool in weed mapping (Sulaiman et al. 2022) be-
cause of their extended ability to gather hundreds
of narrow contiguous bands for each pixel®!. Multi-
spectral imaging has a bandwidth between 120 and
150 nm, whereas hyperspectral imaging is 1-15 nm
(Borengasser et al. 2007). Table 2 shows the nu-
merous hyperspectral sensors and their associated
spectrum for crop species.

At both plants' early and late morphological stag-
es, hyperspectral images produce extremely precise
maps that could be employed to acquire an elabo-
rate spectral value of target species at an intermedi-
ate scale (Lu et al. 2020). The effectiveness of weed
mapping with 128-band hyperspectral imagery and
a Random Forest algorithm to map leafy spurge (Eu-
phorbia esula) and spotted knapweed (Centaurea
maculosa) was evaluated by Lawrence et al. (2006).

Eddy et al. (2014) categorised weeds with bet-
ter precision by utilising hyperspectral imageries.
Huang et al. (2016) prepared a ground-based hy-
perspectral remote-sensing method for detecting
crop injury from herbicides and distinguishing be-
tween herbicide-resistant and -sensitive weeds.

Eddy et al. (2008) grouped weeds within canola,
wheat, and pea by adopting a ground-based hyper-
spectral technology and assessed the performance
of this technique for weed recognition at the field
level. Yang and Everitt (2010) used a hyperspectral-

Table 2. Hyperspectral sensor and its associated spectrum
for crop species

S. No. Crop / Weed Scientific Spectrum Algorithm
name used
1. Amaranth Amaranthus 560 nm
macrocarpus
2. Pigweed Portulaca 440 nm
oleracea
3. Mallow weed Malva sp. 710 nm Dlscrlmu}ant
c analysis
4. Nutgrass P e:ius 720 nm (Ahmed et al.
rotundus 2016)
5 Liver seed Urgchpa 680 nm
grass panicoides
6. Sorghum Sorghum 850 nm
bicolor
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imaging technique and a minimum noise fraction
(MNF) algorithm to map invasive weeds such as ashe
juniper, broom snakeweed, and water hyacinth from
associated plant species. All the plant species had
similar reflectance under visible reflectance, while
the invasive weeds could be distinguished from oth-
er species under near-infrared reflectance.

An experiment on hyperspectral mapping
to track plant entry which was performed by He et
al. (2011), revealed that intruders could be discov-
ered at the species level through the use of spec-
tral characteristics displayed by the hyperspectral
imaging technique. This accurately gives a baseline
of invasive species dispersal for future monitoring
and control efforts. With the help of the geographi-
cal dispersion of invaders, farmers organise long-
lasting conservation programs to safeguard and
sustain natural ecosystems.

Underwood et al. (2003) performed a trial to map
ice plants and jubata grass in the Mediterranean
ecosystems of California, which showed that hy-
perspectral visuals can accurately map nonnative
plant species with MNF. A controlled laboratory ex-
periment was carried out by Smith and Blackshaw
(2003) to examine the potential of multispectral and
hyperspectral sensors to distinguish between crop
species (canola and wheat) and weed species (com-
mon lambs' quarters, wild mustard, redroot pig-
weed, wild oat, and green foxtail). The hyperspectral
sensor differentiated all the species at 90% accuracy.

Pignatti et al. (2019) utilised hyperspectral data
to differentiate maize from weeds and to discrimi-
nate between different species of weeds by exploit-
ing leaf chlorophyll and carotenoid content and
by using spectral indices. Liu et al. (2019) deployed
a ground-moveable hyperspectral system to cat-
egorise carrot crops and weeds and examined how
many spectral bands were necessary to attain high
accuracy. According to Li et al. (2021), hyperspec-
tral imaging with a machine-learning algorithm
helps in the discrimination of various grass (yellow
bristle grass and wind grass) and broad-leaved (gi-
ant buttercup and Californian thistle) weed species.

Apart from surface-level weed detection, Hestir
et al. (2008) studied waterbodies to evaluate hyper-
spectral sensors. Perennial pepperweed and water
hyacinth were mapped with moderate accuracy,
and submerged aquatic vegetation was mapped
with higher accuracy.

Goel et al. (2003) investigated the capability of hy-
perspectral aerial sensors in connection with nutri-
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ent levels to recognise the weed patches in maize.
They determined that fluctuations in nitrogen levels
altered the accuracy of weed categorisation because
of the changes in chlorophyll levels. Because of the
more complex nature of hyperspectral images than
RGB and multispectral images, they are not used
as much in precision farming (Farooq et al. 2018).
Furthermore, its higher dimensionality and enor-
mous and complicated data analysis made it difficult
to acquire, process, and interpret (Lu et al. 2020).
Thermal imagery. Thermal image analysis in-
volves the conversion of the hidden patterns of radi-
ation of material into visible photographs for feature
collection and analysis (Vadivambal & Jayas 2011).
Although Infrared thermal imagery originally
emerged for defence purposes, it is now commonly
employed in numerous fields. In the farming and
food sector, thermal imaging is often used to track
drought stress, irrigation scheduling, discover
weeds, diseases, and insects in plants, anticipate
fruit production, assess the maturity of fruits, dam-
age discovery in fruits and vegetables, and how tem-
perature varies while cooking (Gomez-Candon et al.
2016). When coupled with Al and deep learning,
thermal remote sensing could render real-time loca-
tion-specific control methods feasible, such as plant
and weed discrimination, production forecasting,
and plant stress assessment (Ballester et al. 2018).
Various thermal weed-control technologies were re-
viewed by Bauer et al. (2020), highlighting the need
for further research into the use of automated imag-
ing systems for weed/crop differentiation.
Commercial farming necessitates proper weed
eradication, and the undiscovered value of thermal
imagery gathered using UAS may enhance the site-
specific approach to weed management (Delavar-
pour et al. 2021). Drone-based spectral, textural,
structural, and thermal weed mapping was evaluat-
ed by Xu et al. (2023), who found that thermal meas-
urements can significantly improve weed-mapping
accuracy when combined with other remote-sens-
ing data. This was further supported by Sagan et al.
(2019), who tested and evaluated three UAV thermal
cameras [ICI 8640 P (Infrared Cameras Inc., USA),
FLIR Vue Pro R 640 (FLIR Systems, USA), and ther-
moMap (senseFly, Switzerland)] for their efficacy
in precision agriculture, with all three cameras pro-
viding useful temperature data. Etienne and Saras-
wat (2019) applied machine-learning methods to au-
tomate weed detection using colour, multispectral,
and thermal imagery and found them cost-effective.
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Rahkonen and Jokela (2003) highlighted using infra-
red radiometry to measure plant leaf temperature
for thermal weed control.

Eide et al. (2021) used drone-based thermal in-
frared and multispectral cameras to detect glypho-
sate-resistant weeds and found that UAV-assisted
thermal and multispectral remote sensing can ac-
curately distinguish between glyphosate-resistant
and -susceptible weed populations. However, they
noted thermal reflectance measurements can be
unreliable due to environmental conditions.

DEEP-LEARNING METHODS

Deep learning has been a valuable device in nu-
merous scientific areas recently, such as natural
language processing (Collobert et al. 2011), speech
recognition (Graves et al. 2013), and computer vi-
sion (Jordan & Mitchell 2015; Krizhevsky et al.
2017). Perhaps the deep learning technologies em-
ployed in ML applications are deep convolutional
neural networks, also known as DCNN (Jordan &
Mitchell 2015). DCNNSs utilise fewer artificial neu-
rons than other neural networks, like the feed-for-
ward method (Krizhevsky et al. 2017). DCNNSs are
very good at detecting objects and characterising
images (Schmidhuber 2015). DCNNs did remarka-
bly well when grouping a dataset of 1.3 mil. higher-
resolution images with 1 000 classes in 2012 in an
ImageNet competition (Krizhevsky et al. 2017).
The usage of DNNs has been made easier by the ac-
cessibility of graphics processing units and the pos-
sibility of training on big datasets.

The most popular artificial neural networks
that have been extensively utilised to recognise
crops and weeds are convolutional neural networks
(CNN). In contrast, there is a shortage of substan-
tial training databases with ground-truth remarks.
A typical remedy to the lack of training informa-
tion is using semi-supervised training and a cut-
paste image analysis method (Hu et al. 2021b).
Performance metrics of some convolutional neural
network algorithms are listed in Table 3.

Deep-learning methods improve the accuracy
of weed-coverage estimation and minimise subjec-
tivity in human-estimated data (Osorio et al. 2020).
Farooq et al. (2018) found that using a DCNN
for patch-based weed identification in hyperspec-
tral images improved classification accuracy com-
pared with traditional methods. Hu et al. (2021b)
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Table 3. Performance metrics of convolutional neural networks in dataset tested

S. No. Neural Network Model Crop Precision Recall F1 score Source
YOLO-v3 0.971 0.970 0.971
1. CenterNet Vegetable 0.956 0.950 0.953 Cdomgg %Mdina
Faster R-CNN 0.955 0.980 0.967
CenterNet2 0.590 0.510 0.550
Faster R-CNN 0.530 0.520 0.520
2. TridentNet Wheat 0.420 0.580 0.490 Louargant et al. (2018)
VENet 0.480 0.520 0.500
YOLO-v3 0.970 0.450 0.620
GoogleNet 0.993 0.999 0.996
MobileNet-v3 0.973 0.963 0.968 Colomina & Molina
3. Turfgrass
ShuffleNet-v2 1.000 0.999 0.999 (2014)
VGGnet 0.998 0.999 0.998
AlexNet-BLW 0.970 0.980 0.970
AlexNet-Grass 0.980 0.970 0.970
GoogleNet-BLW 0.980 0.970 0.980
GoogLeNet-Grass 0.980 0.980 0.980
4. Alfalfa He et al. (2011)
VGGNet-BLW 1.000 0.980 0.990
VGGNet-Grass 0.980 1.000 0.990
ResNet-BLW 0.950 0.530 0.600
ResNet-Grass 0.320 0.890 0.470
YOLO-v3 0.550 0.460 0.500
Faster R-CNN 0.530 0.450 0.490
5. VENet Bahiagrass 0480 0390 0430 Chen et al. (2002)
AlexNet 0.990 1.000 0.990
GoogleNet 0.990 1.000 0.990
VGG 0.990 1.000 0.990

opined that faster region-based are used for object
recognition, quick segmentation, and semantic
segmentation, respectively.

Jin et al. (2022) studied four different deep-learning
methods [GoogLeNet (version 1), MobileNet (ver-
sion 3), ShuffleNet (version 2), and VGGnet] to observe
herbicide efficacy in turfgrass and ShuffleNet-v2 to be
the most efficient and reliable. ShuftleNet-v2 was supe-
rior in different weed species according to their sensi-
tivity to herbicide dosage. The impact of drought stress
in the bahiagrass of Florida was assessed by Zhang et
al. (2022) using DCNNs, who found that image analy-
sis under drought will be more difficult when employ-
ing object-detecting neural networks.

Many characteristics, especially plant col-
our, leaf shape, size, and texture, are important
for weed detection (Espejo-Garcia et al. 2020).
However, environmental conditions like drought
impact the morphological properties of leaves,

50

which could affect the utility of machine-learning
models (Zhang et al. 2022).

CHALLENGES IN ADAPTING UAS AND
REMOTE SENSING

Unmanned aircraft systems in precision agricul-
ture have critical challenges like payload, sensors,
cost of UAS, flight duration, and data analytics
(Huang & Reddy 2015). The devices and tools used
to make precise decisions involve higher costs, mak-
ing them unsuitable for small and marginal farm-
ers (Sharma & Hema 2021). UAS mostly fly using
energy from a battery. Some of the hybrid drones
employ gasoline and batteries for flying. Batteries
of UAS have an endurance of 10 to 30 min maxi-
mum. The endurance of battery life varies based
on the payload capacity, camera power, altitude
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of UAS and weather conditions such as wind speed
(Hardin et al. 2019). The primary influence of the
deployment of UAS in farming is an expenditure
encompassing a range of sensors, technology-driv-
en programs, and the software required for data
processing (Hardin & Jenson 2011). Numerous
terabytes (Tb) of data need to be stored, processed,
and analysed adequately using appropriate soft-
ware. Atmospheric conditions that restrict UAS
operations and their detection process are rainfall,
snow, cloud cover, fog, and wind turbulence. There
are strict regulations for UAS flying from the gov-
ernment side (Sharma & Hema 2021). The drone
flying area is divided into three zones, i.e., (i) green
zone, (ii) yellow zone, and (iii) red zone. In the green
zone, there are no restrictions up to 400 feet from
above ground level; the yellow zone has some re-
strictions on flying UAS over that zone. The remote
pilot needs to get approval from Air Traffic Con-
trol (ATC), to fly the UAS over the yellow zone up
to 200 feet from above ground level. Agricultural
fields near airports and some areas marked as red
zones that were restricted from flying the UAS
by the government have law barriers. While op-
erating UAS in densely vegetated areas, obstacle
avoidance is mandatory to ensure the safety of the
UAS system. These obstacle avoidance sensors are
available with few of the costlier UAS. It should be
mounted with all the UAS to avoid damage (Hardin
et al. 2019).

FUTURE OF AI IN AGRICULTURE

In the future, using new lightweight materials
will increase the endurance of the UAS, enabling
it to accomplish tasks without any constant battery
brakes. Microcontrollers, advanced sensors, the In-
ternet of Things (IoT) with UAS, and big data anal-
ysis & cloud computing should be done to make
precise decisions (Sharma & Hema 2021; Ghazali
et al. 2022). Combined with machine learning, Al
will address key issues like food safety and climate
change (Patel 2023). It also reduces agricultural
chemical dumping and enhances crop productivity
and soil fertility (Naresh et al. 2020). Developing
new lenses and sensors will help identify other dis-
eases or parasites on plants or weeds that are hard
to detect by current hardware. Equipping a UAS
with a granule spreader can help it distribute seeds
much faster, especially in rough terrains and big
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fields such as forests. Agricultural UASs will ac-
complish automatic task sequences such as spray-
ing required water or herbicide on specific are-
as according to the generated map while following
the route on the field (Kaya & Goraj 2020).

CONCLUSION

Farming is one of the key areas shaping the global
economy, as it contributes to the long-term pros-
pects of most of the population. This paper reviews
the possible outcomes of deep learning techniques,
spectral imagery, and UAS in agriculture, with
a special emphasis on weed mapping. This holistic
perspective aids in optimising resource allocation,
minimising herbicides usage, and promoting envi-
ronmentally friendly farming practices.

As we navigate the challenges of feeding a grow-
ing global population while addressing sustain-
ability concerns, adopting UAS and remote sens-
ing in weed management emerges as a crucial
step toward achieving a balance between agricul-
tural productivity and environmental steward-
ship. The ongoing technological advancements
and collaborative efforts between researchers,
industry stakeholders, and farmers promise a fu-
ture where precision agriculture becomes an in-
dispensable tool for sustainable and efficient food
production.
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