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Agriculture supports sustainable livelihood by pro-
viding food, pharmaceuticals, textiles, and raw ma-
terials for  industries through crop production. Yet, 

weed infestation poses a threat to the sector's pro-
ductivity due to its competitive nature (Pusphavalli 
& Chandraleka 2016) as weeds compete with crops 
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for  essential resources like water, light, space, car-
bon dioxide and nutrients (Barba et al. 2020; Mahé 
et al. 2020; Hasan et al. 2021). If not managed prop-
erly, the weed seed bank in a field will greatly impact 
crop productivity and biodiversity (Sodaeizadeh et 
al. 2012). The global potential crop yield loss with-
out weed control was estimated to be as high as 43% 
(Oerke 2006). Therefore, properly managing weeds 
is important for  meeting the  increasing food pro-
duction needs (Westwood et al. 2018). Manual and 
mechanical weeding, herbicide application, sustain-
able strategies, sensors and machine vision-based 
weeding are diverse ways to manage weeds.

Resources such as capital, labour, energy and wa-
ter influence crop production. Labour is a primary 
and major resource for most weeding operations, es-
pecially manual weeding and herbicide application. 
Srivastava et al. (2020) indicated that in India, agri-
cultural labourers are shifting to the non-agricultur-
al sector, which has reduced the agricultural labour 
workforce to 30.7 mil. (12%), leading to a 9.3% hike 
in  labour wages (Vaishnavi & Manisankar 2022). 
This invariably leads to  increased cost of  cultiva-
tion, affecting timely operations and the  econom-
ics of  crop production. In  conventional chemical 
weed control, applying herbicides all over the field 
increases herbicide usage, weed control costs, and 
environmental impact due to residual effects.

To overcome these challenges, scientists are work-
ing on sensor-guided weed-control strategies. Recent 
advancements in mechanical weed control have prov-
en to be improved precision-wise and operationally 
efficient. Improvements in real-time communication 
between implements and sensor systems have fur-
ther enhanced the  capabilities of  mechanical weed-
ing. Various sensors, such as optoelectronic, distance 
sensors and multispectral cameras for plant detection 
and image analysis, and Real Time Kinematics-Global 
Positioning System (RTK-GPS), Global Navigation 
Satellite System (GNSS) for navigation, offer a range 
of options to enhance the effectiveness of weed control 
when integrated with mechanical systems (Machleb 
et al. 2020). Also, integrating sensors on unmanned 
aerial vehicles (UAVs) and ground-based mechanical 
systems has  introduced a  new mode of  weed man-
agement. Combining UAVs with hyperspectral cam-
eras, real-time kinematic global navigation satellite 
system (RTK-GNSS)-controlled sprayers, and other 
already existing technologies, along with the applica-
tion of GIS and GPS, has made it possible to imple-
ment site-specific weed control (Gerhards et al. 2007; 

Loghavi & Mackvandi 2008; López-Granados et al. 
2016). This paper gives an overview of  the develop-
ment and application of sensor-guided weed control 
technologies. This necessitates highlighting the iden-
tification of  herbicide-resistant weeds (Wang et al. 
2016; Huang et al. 2017) and assessment of herbicide 
effect with sensor system. Also, the promising results 
achieved with the number of sensors and navigation 
systems associated with machine vision and the need 
for further improvements in weed management with 
sensors are described.

SENSORS AND THEIR MECHANISMS

Sensors like spectrometric, optoelectronic, fluo-
rescence, and distance sensors play an  important 
role in  the identification of  weeds and discrimi-
nation between weeds and crops. Spectrometric 
sensors like multispectral and hyper-spectral sen-
sors measure reflection intensities of  the electro-
magnetic spectrum, from ultraviolet (UV) to near-
infrared (NIR). The spectral resolution varies with 
the sensor. Plants absorb specific light wavelength 
due to  photosynthetically active compounds or 
other pigments in leaves (Gitelson & Merzlyk 1997; 
Moshou et al. 2002; Ustin et al. 2002, 2004; Asner et 
al. 2005; Noble et al. 2012). Most sensors measure 
visible and NIR light for weed detection, calculat-
ing vegetation indices like the  Normalised Differ-
ence Vegetation Index (NDVI) from spectral data 
(Zhu et al. 2008). Spectrometers are capable of dis-
tinguishing between plants and soil; they can dif-
ferentiate between various plant species.

Optoelectronic sensors concentrate on a  lim-
ited number of  specific spectral bands, typically 
one or two, and are designed to  operate within 
the red (R)/NIR spectrum. Their primary empha-
sis lies in discerning plant presence and absence, 
achieved by measuring indices closely associated 
with plant coverage values (Sui et al. 2008). Com-
mercial sensors of this type operate with the same 
spectrum to derive an index comparable to NDVI 
(Peteinatos et al. 2013). Weed seeker® 2 (Trimble 
Inc., USA) is a  commercial automatic spot-spray 
system that applies herbicide only when the sen-
sor detects a  weed; advanced optics and pro-
cessing power enable the  sensor to  detect and 
eliminate weeds. This technology helps to reduce 
the cost of weed control and chemical use by up 
to 90% (Trimble Agriculture 2024).
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Fluorescence sensors measure the wavelength and 
intensity of fluorescent radiation emitted by leaves 
of plants in a particular amount of time after they 
are exposed to  radiation for  a  particular time. 
Shortly after being exposed to light, the plant emits 
fluorescent radiation, the  wavelength of  which is 
longer than that of the incident light. Depending on 
the properties of the leaf and its physiological state, 
the  intensity of  fluorescence will vary (Cerovic et 
al. 1999). According to  Krause and Weis (1991), 
plants' emission of  fluorescent light is due to  the 
presence of  chemical compounds such as  chlo-
rophyll, polyphenols, flavonols, and anthocya-
nins. The  presence of  anthocyanins and flavonols 
in the epidermis of the leaves enables the emission 
of  blue-green fluorescence (450  nm) when leaves 
are stimulated with UV radiation. When chlo-
rophyll a  and b are stimulated thus, a  fluorescent 
spectrum in  the range of  red to  far-red (680–700 
and 735–750  nm, respectively) is emitted. Multi-
plex® (Force A, France), MiniVegN® (Fritzmeier 
Umwelt Technik GmbH & Co. KG, Germany), and 
PAM® fluorometry (Heinz Walz GmbH, Germany) 
are some active sensors that  measure chlorophyll 
fluorescence (Peteinatos et al. 2013).

Light Detection and Ranging (LiDAR) and ultra-
sonic sensors are "distance" sensors as they measure 
the distance to the target based on the travel time be-
tween the target and source. LiDAR sensors use a laser 
beam for measuring the distance to the target either 
by the phase difference produced from the emitted la-

ser beam and the reflected one or by the time needed 
for the laser pulse to travel between the transmitter 
and the receiver of the sensor, reflected by the target 
(Ehlert et al. 2009; Rosell & Sanz 2012). 

In ultrasonic sensors, based on time of  flight, 
the distance to the target is measured using an ul-
trasonic pulse, which has  been used in  weed de-
tection and discrimination. The  last echo belongs 
to the soil, while previous echoes belong to vegeta-
tion (Dille et al. 2002; Andújar et al. 2011, 2012a, 
2012b). Moreover, higher measurement frequencies 
of  LiDAR sensors make them more precise than 
ultrasonic sensors (Fernández-Quintanilla et al. 
2018). In  particular, ultrasonic sensors are readily 
available, inexpensive, and reliably accurate (99%) 
between the 100 mm and 10 m range (Tillett 1991).

Imaging sensors are a camera-based sensing sys-
tem. Red green blue (RGB) camera, NDVI camera 
and bispectral camera are some of  the imaging 
sensors used to  discriminate plants from soil and 
weeds from crop species. The  procedure involves 
digital image acquisition, image segmentation 
(subdividing images into regions of  similar char-
acteristics), and extracting plant shape, colour, tex-
ture, and location features (Peteinatos et al. 2013). 
With the  bispectral camera, researchers managed 
to  achieve high-resolution images and to  identify 
weeds correctly by subjecting the  images to  three 
groups (Rumpf et al. 2012) and four groups (Weis & 
Gerhards 2007) or five (Sökefeld et al. 2007) classi-
fication algorithms. As illustrated in Figure 1, using 

Figure 1. Bi-spectral camera imaging and steps involved in discrimination of weeds
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bi-spectral imaging and a three-group classification 
algorithm, Rumpf et al. (2012) successfully differ-
entiated between monocotyledonous and dicotyle-
donous weeds, as  well as  summer barley, achiev-
ing a classification accuracy of over 80% across all 
categories, and notably exceeding 94% accuracy 
for monocotyledonous plants. Active shape model 
(ASM) matching and colour co-occurrence meth-
od (CCM) are some techniques to  identify weeds 
with RGB imaging. In ASM, shape boundaries are 
calculated first, and a mean leaf shape model is cre-
ated to represent the boundary shape of the identi-
fied weed. A functional shape description is gener-
ated for each recognised object in the identification 
process. The shape function parameters are subse-
quently adjusted to align with the reference mean 
models, and the extent of the required transforma-
tion determines the degree of similarity. ASM ap-
proaches can address the overlapping issue to some 
degree (Franz et al. 1991; Persson & Astrand 2008; 
Swain et al. 2011; Pastrana 2012). The  CCM 
was  used by  Burks et al. (2002), and the  differen-
tiation of  weed plant species was  achieved based 
on texture. The  RGB colour space was  converted 
to HSI (hue, saturation, and intensity) values dur-
ing this process. Subsequently, colour co-occur-
rence matrices were derived from the  three HSI 
channels. A  classifier was  trained using texture 
features extracted from these matrices. Burks et al. 
(2002) attained 100% accuracy in soil classification, 
while classification accuracy for four plant species 
(ivyleaf morning glory, large crabgrass, giant fox-
tail, and velvetleaf ) exceeded 90%.

ROBOTIC MECHANICAL WEED 
MANAGEMENT

Mechanical weeding could be considered a poten-
tial alternative for chemical weed control, although 
it has some issues (Busi et al. 2013) like, the possi-
bility of crop damage due to steering errors (Home 
et al. 2002; Melander et al. 2006) and its suitability 
based on external factors. The emerging herbicide-
resistant weeds at the global level demand alternate 
weed management strategies. One such strategy 
can be the  introduction of  sensor-guided robotic 
mechanical weeding. A  total of  272 (117  mono-
cotyledons and 155 dicotyledons) herbicide-re-
sistant weed species have been reported glob-
ally (Heap 2024). Consideration of  the mechanical 

weeding basic concepts such as  treatment timing, 
frequency, intensity, and factors like crop growth 
stage, soil moisture and texture, as well as the previ-
ous and succeeding weather conditions, are more 
essential for  efficient mechanical weed control 
(Machleb et al. 2020). Sensor-based (intelligent) cul-
tivators need to possess the capability to recognise 
either crop row structures or individual crop plants, 
ensuring an ideal alignment of tools with the crop. 
The mechanical implement should be directed close 
to the crop plants to increase the treated field area 
and prevent the crops from physical damage (Home 
et al. 2002; Melander et al. 2006).

Agricultural robots have diverse applications 
in  the field, encompassing harvesting and weed 
control tasks. Their appearance, design, and setup 
can vary, ranging from modified tractors to com-
pact specialised platforms that autonomously trav-
erse the field to perform specific crop operations 
(Emmi et al. 2014). Regarding the autonomous re-
moval of weeds using mobile robots, Slaughter and 
Giles (2008) mentioned certain technical prerequi-
sites, which include weed detection and identifica-
tion, self-guidance, weed mapping, and precision 
intra-row weed control. To carry out this challeng-
ing task, a sequence of steps is important to locate 
the  exact position of  the weed or crop. Robotic 
systems use two concepts: mechanical weeding 
and plant care. First, geo-referencing the  seeded 
or planted crop plants using GNSS and record-
ing their locations in  a  plant map are performed 
(Pérez-Ruiz & Upadhyaya 2012). Later, a  robotic 
system can employ these data to  identify each 
crop plant and execute the required weeding tasks. 
With RTK-GPS-referenced seeding, an Intelligent 
Autonomous Weeder (IAW, Wageningen Uni-
versity) was  used for  inter-row hoeing in  maize, 
at a driving speed of 0.5 m/s in which no damage 
to crop plants was observed (Bakker et al. 2010a, 
2010b, 2010c). Here, the  limitation is the  driving 
speed of 0.5 m/s, which is a slow working speed. 

In the early 2000s, inter-row weeding was estab-
lished successfully with tracking crop rows. To ad-
dress intra-row weeding issues, Tillett et al. (2008) 
fitted out the  Garford hoeing system with newly 
designed, half-moon-shaped cultivation blades 
guided by a vision system for single-crop plant iden-
tification. Besides achieving up to  an 87% reduc-
tion in  intra-row weeds, damage to cabbage plants 
was  also avoided. Fennimore et al. (2014) tested 
the Garford InRow Weeder with hydraulically con-
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trolled rotating discs in celery, bok choy, radicchio, 
and lettuce, reducing thinning and hand weeding 
time by  25% for  seeded lettuce and achieving 85% 
reduction in weed densities for transplanted crops. 
The Garford "Robocrop Guided Hoes" and the "Rob-
ocrop InRow Weeder" are now commercially used 
for  weed control in  different row crops. Melander 
et al. (2015) conducted a  trial using the  Robova-
tor (F.  Poulsen Engineering, Denmark) for  intra-
row weeding in  transplanted cabbage and onion. 
The  Robovator employs a  machine vision system 
to  identify single-crop plant and knife-like bladed 
tine pairs for  each crop row. No clear differences 
were observed in  weed control efficacy between 
the conventional method (torsion weeder + harrow-
ing) and the Robovator (smart cultivator). Lati et al. 
(2016) experimented with Robovator in transplant-
ed lettuce and direct-seeded broccoli. Under moder-
ate to high weed density conditions, the Robovator 
reduced manual weeding time by  45%. Compared 
to  standard cultivator knives, the  Robovator re-
moved 18% and 41% more weeds. These findings 
highlight the  feasibility of  sensor-based intra-row 
weeding and its importance in minimising manual 
weeding hours. Nørremark et al. (2012) reported 
a robotic system with a cycloid hoe that carried out 
mechanical intra- and inter-row weed control us-
ing GNSS-reference when moving along crop rows. 
This combination resulted in high WCE, and large 
areas of a field, up to 91%, were weeded successfully. 

Baerveldt and Åstrand (2002) fitted a  forward-
looking camera, utilising a grey-level vision system 
and an NIR filter into a robotic system. This enabled 
the system to locate rows of sugar beet and identify 
individual plants. The  adaptability of  robotic sys-
tems for individual crop plant care was thus estab-
lished. Large weeds like Rumex spp. L. or Cirsium 
arvense L. pose challenges in pastures, necessitat-
ing hand weeding or herbicide spraying. Adoption 
of  automatic mechanical weeding systems would 
not only be environmentally significant but could 
also substantially reduce the  need for  manual la-
bour. Van Evert et al. (2011) developed an autono-
mous robot to identify and eradicate Rumex obtusi-
folius L. on a  commercially operating farm. They 
used GNSS to navigate the  robot on a predefined 
path and a camera to identify weeds. With this sys-
tem, 75% of Rumex sp. were removed successfully, 
with a weed detection rate of 93%.

Kunz et al. (2015) compared automatic RTK-
GNSS or camera-assisted steering with conven-

tional weeding strategies in their field experiment 
with soybeans and sugarbeets. Automatic hoe 
guidance was  superior to  all other methods, re-
sulting in an 89% weed reduction in soybeans and 
87% weed reduction in  sugarbeets. The  increas-
ing driving speeds from 4 to  7 and 10  km/h with 
automatic steering resulted in no negative impact 
on the crops. Subsequent field experiments in the 
same crops led to an 82% reduction in weeds when 
combining mechanical weeding implements with 
a camera-steered hoeing frame (Kunz et al. 2016). 
Similarly, a camera-steered hoe in maize achieved 
an  average weed density reduction of  85% com-
pared with untreated control (Kunz et al. 2018).

Ultrasonic and LiDAR sensors are usually in-
tegrated with other sensors to  navigate robots or 
vehicles in the field.  Andújar et al. (2012a, 2012b) 
used ultrasonic sensors to identify high weed infes-
tation patches in crop fields. Similarly, Rueda-Ayala 
et al. (2015) experimented with ultrasonic sensors 
for harrowing in maize. This study aimed to adjust 
tine angles based on weed density, sparing crop 
plants from unnecessary mechanical stress. As the 
working intensity of the harrow varied with the an-
gle of tine, steeper angles resulted in high (aggres-
sive) intensity, while gradual adjustments were 
found to  be less intense on both weeds and crop 
plants. The adjustment of tine angles was achieved 
by utilising the tractor mounted with an ultrasonic 
sensor in front, enabling weed detection and facili-
tating real-time adjustments to  the harrow tines. 
The average effectiveness of weed control was found 
to be 51%. As this system was meant to be a real-
time harrow adjustment system, the system's cali-
bration was necessary concerning the crop stage.

Chandel et al. (2019) also designed a  weeding 
tool with vertical axis rotary mounting and lat-
eral shifting mechanism (LSM). The LSM, driven 
by  an ultrasonic sensor and a  single-board com-
puter [ATMEGA 328 (Microchip Technology Inc., 
USA)], responded in  real time to  crop height. 
The overall operating efficiency of the sonar sen-
sor-based intra-row weeding prototype for  row 
crops varied between 80% and 96% when evalu-
ated under different plant spacings, different for-
ward speeds, motor speeds, and operating delays. 
Andújar et al. (2013) successfully used LiDAR sys-
tems to detect and classify weeds in a crop field. 
Similarly, Reiser et al. (2018) also steered a robot 
with a  laser scanner in  the early growth stages 
of maize rows.
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Figure 2. Time line of developments in sensor based weeding (1997–2022)

Noguchi et al. (2004) introduced the  concept 
of a robot fleet using a master-slave system, where 
autonomous vehicles handle all agricultural tasks 
from planting to harvesting. The master robot han-
dles planning and decision-making, while the slave 
robots assist in  assigned tasks. The  robotics and 
associated high-technologies equipment for  ag-
riculture (RHEA) project modifies commercially 

available tractors to  autonomously perform agri-
cultural duties, incorporating multi-level supervi-
sion architecture like machine vision for crop row 
detection and weed, GNSS for  navigation, and 
laser range finders for  obstacle detection (Emmi 
et al. 2014). The  tractor from the  RHEA project 
was  enhanced by  Pérez-Ruiz et al. (2015), incor-
porating a mechanical and thermal weeding tool. 
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The  thermal tool (flaming), guided by  machine 
vision, targeted and removed intra-row weeds 
in maize selectively, while the mechanical tools con-
ducted uninterrupted inter-row hoeing irrespec-
tive of weed coverage. With this combination, 90% 
weed reduction was  achieved with no major crop 
losses. In addition, the RHEA fleet system has also 
been tested by Conesa-Muñoz et al. (2015) in crops 
like onion and garlic. The  images and work of  the 
Unmanned Ground Vehicle (UGV) with mechani-
cal thermal implements (RHEA-fleet-system) were 
given in detail by Gonzalez-de-Santos et al. (2017).

Some companies are developing autonomous and 
semi-autonomous robotic weed-management solu-
tions to reduce the use of herbicides. One such com-
pany is Naïo Technologies (France), which has  de-
veloped a number of robots, including Ted (Vineyard 
weeding robot), Jo (for Vineyards), Oz (small multi-
functional robot), and Orio and Dino for agricultur-
al operations. Navigation of  these robots is mostly 
based on RTK-GPS with a pre-planned path (Naïo 
Technologies 2024). The  company Carré-Made 
for  Agriculture (France) (2020) has  also developed 
a related concept of a robot named "ANATIS". It also 
performs mechanical weeding autonomously in veg-
etable farms. However, it is limited to working only 
in inter-row spaces; intra-row weeds should also be 
considered. Moreover, a small solar-powered robot-
ic weeder named "Tertill" was developed for weed-
ing in gardens (Tertill 2020), which is a commercial-
ly available product. PUMAgri by SITIA is another 
robotic weeder developed for  weeding vineyards 
(Platform PUMAgri – SITIA 2020) and is equipped 
to work day and night.

These robotic weeders are designed differently and 
have varying sizes based on need. Robots of com-
pact size, easy to handle, and of average weight are 
advantageous in  reduced soil compaction. Besides 
the  size and weight, sloping terrain is also an  is-
sue for  intelligent weeding implements. To  cope 
with this issue, the  company Energreen  (2024) 
has developed a number of robots with the capac-
ity to weed and mow on slopes with more than 30° 
gradient. However, it is not an autonomous robot; 
instead, it is controlled remotely. Meanwhile, Farm-
Wise's (2020) robot employs deep learning to fulfil 
the requirements for successful sensor-guided me-
chanical weeding by capturing and analysing plant 
images for weed detection and removal. This robust 
system is suitable for  prolonged fieldwork in  vari-
ous conditions. A  new similar but solar-powered 

autonomous robot, the "Farmdroid FD20®", an  in-
teresting hybrid robot, combines sowing and hoe-
ing between crop rows, contributing to the concept 
of autonomous farming. According to their website, 
Farmdroid can care for  6.5 ha per day and 20  ha 
per season by  working continuously at  a  speed 
of 1 km/h (FarmDroid FD20 2020).

Gerhards et al. (2023) evaluated seven robotic 
weeders in  sugar beet and winter oil-seed rape. 
They reported that  75–83% of  herbicide savings 
were achieved in band-spraying and inter-row hoe-
ing guided by RTK-GPS. Hoeing robots, specifically 
Farmdroid-FD20®, Farming Revolution-W4®, and 
KULTi-Select® (with a  finger weeder), exhibited 
remarkable weed control of 92% to 94%. Less than 
5% crop stand loss was  observed in  all the  treat-
ments except for the W4-robot. The KULT-Vision 
Control® inter-row hoeing achieved 80% weed con-
trol efficacy with only 2% crop stand loss. However, 
the hoeing robots, with in-row elements operated 
at a  low working speed of 1 km/h, incurred treat-
ment costs twice as  high as  broadcast herbicide 
application and three times higher than camera-
guided inter-row hoeing.

SENSORS IN CHEMICAL WEED 
MANAGEMENT

Herbicides are usually sprayed evenly throughout 
the fields, even though there is substantial evidence 
that  weeds are more likely to  grow in  patches or 
clumps within crop fields (Loghavi & Mackvandi 
2008). Real-time sensor-based weed detection 
enabled the application of  variable rates of herbi-
cide, where the weed sensor (optoelectronic sensor 
– R and NIR lights) was carried by a guide wheel 
to  minimise vibration and connected to  the on-
board terminal on the tractor to detect small weeds 
in  the cotyledon stage (Dammer et al. 2007). This 
terminal communicated with a  computer, which 
controlled a  field sprayer using a  control system 
(ISOBUS). According to the sensor signal, the ap-
plication rate was  adjusted by  a  sprayer control 
system [commercial 4 000 L field sprayer (BBG-
Amazone, Germany)]. An average herbicide saving 
of 24.6% was achieved out of 13 field trials. Dam-
mer et al. (2007) added that, in  comparison with 
conventional application, on average, no yield re-
duction was caused by sensor-based herbicide ap-
plication. Similarly, Loghavi & Mackvandi (2008) 
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introduced a  prototype patch sprayer for  precise 
weed control, integrating DGPS, GIS, and sole-
noid-activated spray nozzles. Weed positions in the 
plot were tracked using Ashteck Promark2 DGPS 
receivers, and with the  use of  a  microcontroller, 
weed patch locations on the  electronic map were 
retrieved. Results from their experiment confirmed 
that  patch spraying effectively controlled weeds, 
with significant herbicide (Gramoxin, 10%) sav-
ings (69.5%) compared to  conventional methods, 
which recorded mean herbicide spray volume con-
sumption rates of 40 L/ha whereas for patch spray 
12.2 L/ha was noted. 

Staab et al. (2009) developed a  precision weed-
control system that can autonomously detect, iden-
tify, and map weed species in the seedline of direct-
ly seeded processing tomatoes. The system utilises 
a hyperspectral imaging subsystem with a spectral 
range of  385–810  nm at  1.6  nm resolution and 
a spatial resolution of 0.4 mm across the seedline. 
Hyperspectral field images are collected in  real 
time from a continuously moving cultivation sled. 
An offline multivariate Bayesian classifier was built 
to determine the type of plant represented in each 
pixel in  the hyperspectral images. Site-specific 
classifier training significantly improved classifier 
performance on the  field data. It correctly recog-
nised 95% of  tomato foliage and over 84% of  four 
weed species: black nightshade (Solanum nigrum), 
lambsquarter (Chenopodium album), red-root pig-
weed (Amaranthus retroflexus), and purslane (Por-
tulaca oleracea). The hyperspectral imaging system 
was robust in identifying partially occluded foliage, 
providing an accurate weed map for species-specif-
ic herbicide application.

However, developing a dependable real-time sys-
tem for weed control is challenging, notably in dis-
tinguishing crops from weeds. Raja et al. (2020) in-
troduced a novel technique called "crop signaling", 
utilising machine vision to differentiate crops from 
in-row weeds even in  complex natural scenarios. 
The technique involves using machine-readable sign-
aling compounds to  create distinct visual features 
for  crop–weed discrimination. They are designed 
for  a  vision-based weeding robot with a  micro-jet 
herbicide-spraying system. The proposed algorithm 
achieves high accuracy in  crop (lettuce) detection 
(99.75%) and weed identification (98.11%).

Similarly, the  ONE SMART SPRAY, developed 
by Bosch (Germany) and BASF (Germany) in 2021, 
offers a  revolutionary approach to  weed control. 

This precise, site-specific sprayer customises herbi-
cide applications without requiring an internet con-
nection. Equipped with high-resolution cameras, it 
detects weeds in  milliseconds, applying herbicides 
only where needed for optimal efficiency, with over 
95% accuracy. It operates day and night, supported 
by LED lighting, and transfers data post-application 
to the xarvio® ONE SMART SPRAY module, which 
creates digital maps to  monitor weed growth and 
resistance. This cutting-edge technology enhances 
agricultural productivity, profitability, and sustain-
ability (ONE SMART SPRAY  2023). Saile et al. 
(2022) reported that  a  combined integrated weed 
management (IWM) approach using a  pre-emer-
gence herbicide application (plot sprayer) and post-
emergence sensor-guided (camera-guided harrow 
and hoe) mechanical weed control in  cereal crops 
offers the 100% weed control efficiency (WCE) and 
implied that  it was  the most robust weed manage-
ment strategy.

Pérez-Ruiz et al. (2015) also enhanced a  tractor 
from the  RHEA project by  incorporating a  patch 
sprayer (variable rate sprayer for real-time applica-
tion) and canopy sprayer (air blast sprayer) for pes-
ticide application in groves, woody crops, and or-
chards. A  detailed description and images of  the 
patch sprayer and canopy sprayer system with UGV 
and UAV for weed mapping can be found in Gon-
zalez- de-Santos et al. (2017).

Sensor-carrying UAV in  chemical weed man-
agement. López-Granados et al. (2016) focused on 
site-specific weed management, applying customised 
control treatments based on geo-referenced weed-
seedling infestation maps generated in two sunflower 
fields by  analysing overlapping aerial images of  the 
visible and NIR spectra. They utilised UAVs equipped 
with visible or multispectral cameras, flying at 30 and 
60 m altitudes to collect pictures. The study involved 
configuring and evaluating the  UAV and sensors 
for image acquisition and ortho-mosaicking, develop-
ing an automatic image-analysis procedure for weed-
seedling mapping, and designing a site-specific weed-
management program. Object-based image analysis 
(OBIA) methods successfully matched sunflower rows 
with ortho-mosaicked imagery and accurately clas-
sified them for  all flight altitudes and camera types. 
The  OBIA procedure facilitated the  computation 
of herbicide requirements for timely and site-specific 
post-emergence weed-seedling management.

Martin et al. (2020) investigated the  feasibility 
of  using a  remotely piloted aerial application sys-
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tem (RPAAS) instead of a backpack sprayer for post-
emergence herbicide application. They applied a spray 
mixture of tap water and fluorescent dye on palmer 
amaranth (Amaranthus palmeri) and ivy leaf morn-
ing glory (Ipomoea hederacea) using the RPAAS and 
CO2-pressurized backpack sprayer. The study found 
comparable spray efficiency between those sprayers. 
The adaxial surface had a significantly higher fluores-
cent spray droplet density for  the backpack sprayer. 
At  the same time, the  RPAAS showed increased 
droplets on the  abaxial surface due to  rotor down-
wash and wind turbulence generated by the RPAAS, 
causing leaf fluttering. Such a phenomenon may im-
prove the  efficacy of  contact herbicides, implying 
that RPAAS is superior to conventional sprayers. 

Abdulsalam et al. (2023) used monocular vision 
for drones to autonomously detect various weeds and 
estimate their positions for  precision agriculture. It 
utilises a deep neural network architecture called fused 
YOLO (you only look once) to classify and detect weeds 
in images captured by a monocular camera on a UAV 
following a predefined elliptical trajectory. Weed posi-
tions are estimated using an unscented Kalman filter 
(UKF), and bounding boxes are assigned to determine 
the exact locations of weeds. Indoor and outdoor ex-
periments validated the effectiveness of this approach 
in  the detection/classification/estimation approach; 
misclassification and mispositioning errors of  weed 
estimation were minimal. Paul et al. (2023a) reported 
that  applying pretilachlor followed by  bispyribac-Na 
with drones was more efficient in terms of profitabil-
ity, energy use, and benefit-cost ratio in direct-seeded 
rice. In  addition, UAV application of  pre-emergence 
herbicide (pretilachlor) was more effective during ear-
ly growth stages for timely weed control without any 
phytotoxicity to rice seedlings (Paul et al. 2023b).

SENSORS IN COMBINED WEED 
MANAGEMENT

Bawden et al. (2017) developed an agricultural robot 
named AgBotII that  is integrated with a  mechanical 
implement and spraying system. The robot identified 
and classified weeds with an  RGB camera; based on 
this information and GPS location, the implement re-
moved the weeds either mechanically or treated them 
chemically with respect to species of weeds classified 
by software. The classification achieved a high accura-
cy of 90%. Wild oats and sow thistle were successfully 
removed mechanically. The combination of mechani-

cal and chemical weed control strategies in  robots 
could emerge as a potent alternative to traditional con-
trol methods. Since it works based on pre-captured 
and processed image datasets of weeds, there may be 
a chance of damaging crops. So, further improvement 
in  the machine is needed for commercial use of  this 
implement in fields with crop rows. 

SENSORS IN HERBICIDE EFFECT 
ASSESSMENT

Non-destructive assessment of  herbicide effects 
may aid integrated weed management. Streibig et 
al. (2014) tested whether a sensor can detect herbi-
cide effects on canopy variables with a  logarithmic 
sprayer. Nine sensor systems were used for  scan-
ning spring barley and oil-seed rape fields sown 
with varying crop densities and increasing herbicide 
(tribenuron-methyl & glyphosate) rate 12 days post-
spraying at  BBCH 25 (growth stage scale) and 42 
days after sowing. Comparing ED50s (herbicide ef-
ficacy response curve) for crops and weeds derived 
by  sensors concerning their density and herbicide 
effects was  their objective. The  sensors revealed 
changes in canopy colours, height, and density be-
cause of herbicide application despite them not be-
ing originally designed for  such purposes. These 
findings suggest the  potential for  future sensor 
standardisation, benefiting research and develop-
ment for  detecting herbicide effects on crops and 
weeds during critical canopy development stages.

SENSORS IN HERBICIDE-RESISTANT 
WEED IDENTIFICATION

WeedPAM® (mobile version of  IMAGING-
PAM® – a fluorescence sensor), a novel chlorophyll 
fluorescence imaging sensor, can identify herbicide 
stress in weeds shortly after treatment. Wang et al. 
(2016) assessed its ability to differentiate between 
herbicide sensitive and resistant populations of Al-
opecurus myosuroides at  five days after treatment 
(DAT) with ALS- and ACCase-inhibiting herbi-
cides. Resistance profiles were analysed through 
standard greenhouse bioassays, whereas the sensor 
measured the maximum quantum efficiency of PS 
II on A. myosuroides plants. Classification based on 
the sensor data was confirmed visually at 21 DAT, 
with 95% accuracy in  WeedPAM classifications. 
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This ability of WeedPAM (Figure 3) to detect her-
bicide-resistant A. myosuroides populations shortly 
after treatment can facilitate the  selection of  al-
ternative weed-control methods within the  same 
growing season.

Huang et al. (2017) created and employed UAV 
technology to  conduct digital imaging in  a  RGB 
spectrum as  well as  colour-infrared imaging over 
agricultural fields. This was utilised for identifying 
weed species, assessing crop injury caused by vary-
ing doses of dicamba, and detecting and mapping 
naturally occurring glyphosate-resistant (GR) and 
-susceptible (GS) weeds. Similarly, Eide et al. (2021) 
used UAV-assisted thermal and multispectral sens-
ing techniques for  the detection of  glyphosate-
resistant and -susceptible biotypes within a  week 
of  herbicide application in  a  real-field condition 
due to their potential to detect plants' biophysical 
characteristics. Spectral reflectance data obtained 
from different weeds were processed in  ArcGIS 
and with different image classification techniques. 
NDVI and composite reflectance analysis of  mul-
tiple spectra 842, 705, and 740 nm gave better ac-
curacy than thermal reflection values. They found 
that at 8 DAT of herbicide, a commendable classi-
fication was achieved with 87.2% accuracy by ran-
dom trees classifier, among others. Huang et al. 
(2022) explored the spectral features of glyphosate-
resistant and glyphosate-sensitive Johnsongrass 
(Sorghum halepense) plants using the  hyperspec-
tral plant-sensing approach and differentiated them 
with machine-learning algorithms. As mentioned, 
GR plants were found to  have higher spectral re-
flectance than GS plants. They reported that with 
this approach, GR Johnsongrass was accurately dif-
ferentiated from GS Johnsongrass with a classifica-
tion accuracy of 77%.

MACHINE VISION IN WEED SEED 
IDENTIFICATION

Manual identification of seeds by specialised tech-
nicians is a  challenging and time-consuming pro-
cess. So, implementing computer-based methods 
for  rapid and reliable seed identification and clas-
sification becomes important in  terms of  techni-
cal and economic aspects. Internet of Things (IoT) 
technology in weed seed identification can be valu-
able in agriculture and crop management. As it in-
tegrates image-capturing sensors, data collection 
and transmission with wireless communication 
protocols, machine learning algorithms and cloud 
computing for  large datasets, the  developed data-
base can be used in future with mobile applications, 
and web interfaces enabled upgradability will lead 
to  more efficient and precise weed management 
in  agriculture. The  automatic systems can utilise 
seed images to extract classification features related 
to size, shape, colour, and texture, making machine 
vision, involving image-processing algorithms and 
classification methods, an  appropriate framework 
for  automated seed identification (Granitto et 
al. 2005). These authors tested the potential of au-
tomatic computer-based systems in  terms of  re-
liability and quickness in  identifying weed seeds 
from colour and black-and-white images. Standard 
image-processing techniques were employed to ex-
tract morphological and textural characteristics 
of seeds as classification features for effective evalu-
ation. The study used a database of 10 310 images 
representing 236 weed species. They considered 
implementing a  simple Bayesian approach (naive 
Bayes classifier) and artificial neural network sys-
tems (single and bagged) for seed identification. Re-
sults indicated that  the naive Bayes classifier, with 

Figure 3. A – the WeedPAM® sensor in the field; B – chlorophyll fluorescence imaging of A. myosuroides (Wang et 
al. 2016); C – chlorophyll fluorescence imaging of herbicide-treated soybean (Wang et al. 2018)

(A) (B) (C)
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a well-selected set of features, performed excellent-
ly compared with the more complex neural network 
approach. Hardware cost and operational complex-
ity could also be reduced by  using morphological 
and textural characteristics alone as  classification 
features with black-and-white images. The findings 
suggest that, under specific operational conditions, 
this approach would result in a relatively minor loss 
in performance compared to using colour images.

CHALLENGES IN THE USE OF SENSORS 

The challenges in combining mechanical weeding 
and sensor guidance start from the inherent nature 
of  mechanical weeding. Treatment timing varies 
across regions and soil conditions without assur-
ance that a sensor-guided implementation consist-
ently reduces treatment applications. While ma-
chinery equipped with sensors can enhance weed 
control, not all systems are practical, and downsides 
may include higher repair and acquisition costs. Au-
tonomous systems need robust accident prevention 
to avoid field and roadway damage. Market trends 
favour mostly camera-steering systems in mechani-
cal weeding. Future challenges involve design-
ing robust, lightweight, sustainable sensor-guided 
weeding implements to address repair delays. Addi-
tionally, alternative fuel technology should be con-
sidered to reduce pollution in fieldwork, potential-
ly favouring small robots running on solar power 
over single tractors. Further advancements require 
a  better understanding of  mechanical intra-row 
weed control, AI algorithms for species differentia-
tion, improved actuators, enhanced robot durabil-
ity, user-friendly interfaces, and collaboration with 
experts for  effective plant species identification. 
The cultivation system must adapt to  facilitate ro-
botic mechanisation in a modern, diverse, and sus-
tainable agro-ecosystem. 

Though sensor-based UAVs in  weed control of-
fer promising benefits, they have some challenges 
in  adverse weather conditions, such as  strong 
winds, rain, or low visibility, which can hinder 
UAV operations. Maintaining stable flight con-
ditions is crucial for  accurate data collection and 
weed control. Processing and analysing the  vast 
amount of  data collected by  UAV sensors require 
advanced algorithms and computing resources. In-
tegrating real-time data analysis into UAV systems 
is a challenge that affects the speed and efficiency 

of decision-making. Limited battery life constrains 
the flight duration of UAVs. Operating and main-
taining UAVs with sensor technology requires spe-
cialised skills. Farmers and operators need train-
ing to ensure proper use, data interpretation, and 
maintenance of the UAV systems. 

FUTURE PROSPECTS

Transitioning from the  traditional "entire field" 
method to  an individual plant scale reduces syn-
thetic herbicide use without compromising weed 
control. Aerial and ground vehicles carrying sen-
sor systems may be expanded to  gather localised 
field data, enhancing prediction models for  sus-
tainable production management. Intelligent cul-
tivators and robots access past data and integrate 
it into decision support systems for targeted weed 
strategies. Smart implements may streamline 
manual adjustments, such as  automatic adjust-
ment of camera steered hoe for different spacings 
in crop rows. Basic weeding tasks may shift to mul-
tiple robots with diverse implements in  future. 
Robots may use chemical, mechanical, electrical, 
and thermal weeding tools on the same platform. 
An  algorithm with the  ability to  prioritise tech-
niques to be employed based on weed infestation 
will be developed. 

Unmanned vehicles carrying sensors may increas-
ingly be used for precision spraying, delivering herbi-
cides directly to the weeds while minimising exposure 
to  crops and reducing the  overall volume of  chemi-
cals used. This approach improves weed control effi-
cacy, mitigates environmental impact, and helps fight 
against herbicide resistance. As unmanned technology 
matures, fully autonomous vehicles may become more 
common and capable of conducting surveillance and 
intervention missions without human intervention. 
This will save time and reduce labour costs, making 
weed management more efficient. The future may see 
UAVs working with ground-based robots, where UAVs 
identify map weed infestations and ground robots 
carry out the  actual weeding or spraying. This com-
bination could optimise both technologies' strengths 
for  more comprehensive weed management. With 
a growing emphasis on sustainable farming practices, 
UAVs and other robotic systems may likely be utilised 
to apply biological herbicides or natural weed suppres-
sants, further reducing the  environmental footprint 
of agricultural operations.
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CONCLUSION

Sensors play a  crucial role in  contemporary 
weed management, aiding in the navigation, iden-
tification, and differentiation of  crops and weeds. 
Autonomous weeding robots utilise RTK-GPS 
and GNSS for  precise inter- and intra-row navi-
gation. Machine vision, RGB and hyperspectral 
cameras are key components for identifying crops 
and weeds, enabling varied driving speeds and in-
creased precision compared to  manual steering. 
Laser and ultrasonic systems are additional guid-
ance sensors supporting autonomous robots. Small 
robot fleets are expected to  take on repetitive ag-
ricultural tasks, while site-specific weed control 
can be achieved through various spraying systems 
guided by machine vision and hyperspectral cam-
eras. UAVs equipped with DGPS, GPS navigation, 
and multispectral cameras effectively identify and 
map weeds for aerial herbicide spraying, reducing 
reliance on backpack sprayers. These sensor-based 
advancements in weed management facilitate spot 
spraying, leading to higher Weed Control Efficiency 
(WCE), i.e., reduced herbicide usage and increased 
control of weed population, and favour early detec-
tion of resistant weed biotypes and invasive weed 
spread through UAV monitoring.

Integrating mechanical and chemical weed con-
trol in  robots presents a  promising alternative 
to  traditional methods. Rather than focusing on 
crop-specific mechanisation, a  broader applica-
tion of  robots is suggested. However, concerns 
about the commercial availability and affordability 
of large-sized robots for farmers persist, emphasis-
ing the importance of developing machines suitable 
for medium-sized land holdings. Additionally, stud-
ying weed seed banks is crucial, focusing on using 
sensors for  qualitative and quantitative identifica-
tion and seperation of weed seeds. Early detection 
of  herbicide-resistant weeds through sensor tech-
nology is emphasised for  improved weed manage-
ment in the future.
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