Plant Protect. Sci., 2015, 51(4):177-190 | DOI: 10.17221/104/2014-PPS

Real-time PCR applied to study on plant pathogens: potential applications in diagnosis - a reviewReview

Seyed Mahyar MIRMAJLESSI1, Evelin LOIT1, Marika MÄND2, Seyed Mojtaba MANSOURIPOUR3
1 Department of Field Crops and Grassland Husbandry and
2 Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
3 Department of Plant Pathology, North Dakota State University, Fargo, USA$2

Quantitative real-time PCR (qPCR) technique incorporates traditional polymerase chain reaction (PCR) efficiency with the production of a specific fluorescent signal, measuring the kinetics of the reaction in the early PCR phases and providing quantification of specific targets in various environmental samples. There are an increasing number of chemistries to detect PCR products, which are widely used in plant pathology as they cluster into the amplicon sequence non-specific and sequence-specific techniques. In this review, we illustrate a general description of major chemistries and discuss some considerations for assay development as it applies for a wide range of applications in epidemiological studies. The technique has become the gold standard for early detection of pathogens and a fundamental tool in the research laboratory.

Keywords: bacteria; fungi; oomycetes; phytoplasmas; viroids; viruses; plants; quantification; polymerase chain reaction; qPCR chemistries

Published: December 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
MIRMAJLESSI SM, LOIT E, MÄND M, MANSOURIPOUR SM. Real-time PCR applied to study on plant pathogens: potential applications in diagnosis - a review. Plant Protect. Sci. 2015;51(4):177-190. doi: 10.17221/104/2014-PPS.
Download citation

References

  1. Acero F.J., Carbu M., El-Akhal M.R., Garrido C., GonzalezRodriguez V.E., Cantoral J.M. (2011): Development of proteomics-based fungicides: New strategies for environmentally friendly control of fungal plant diseases. International Journal of Molecular Sciences, 12: 795-816. Go to original source... Go to PubMed...
  2. Arya M., Shergill I.S., Williamson M., Gommersal L., Arya N., Patel H.R. (2005): Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics, 5: 209-219. Go to original source... Go to PubMed...
  3. Baric S. (2012): Quantitative real-time PCR analysis of 'Candidatus Phytoplasma mali' without external standard curves. Erwerbs-Obstbau, 54: 147-153. Go to original source...
  4. Barnes C.W., Szabo L.J. (2007): Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology, 97: 717-727. Go to original source... Go to PubMed...
  5. Bilodeau G.J., Levesque C.A., Decock A.W.A.M., Duchaine C., Briere S., Uribe P., Martin F.N., Hamelin R.C. (2007): Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR Green, and Molecular beacons. Phytopathology, 97: 632-642. Go to original source... Go to PubMed...
  6. Bilodeau G.J., Koike S.T., Uribe P., Martin F.N. (2012): Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology, 102: 331-343. Go to original source... Go to PubMed...
  7. Boa-Sorte P.M.F., Simoes-Araujo J.L., de Melo L.H.V., de Souza Galisa P., Leal L., Baldani J.I., Baldani V.L.D. (2014): Development of a real-time PCR assay for the detection and quantification of Gluconacetobacter diazotrophicus in sugarcane grown under field conditions. African Journal of Microbiology Research, 8(31): 2937-2946. Go to original source...
  8. Boben J., Kramberger P., Petrovic N., Cankar K., Peterka M., Strancar A., Ravnikar M. (2007): Detection and quantification of tomato mosaic virus in irrigation waters. European Journal of Plant Pathology, 118: 59-71. Go to original source...
  9. Bonants P.J.M, van Gent-Pelzer M.P.E., Hooftman R., Cooke D., Guy D.C., Duncan J.M. (2004): A combination of baiting and different PCR formats, including measurement of real-time quantitative fluorescence, for the detection of Phytophthora fragariae in strawberry plants. European Journal of Plant Pathology, 110: 689-702. Go to original source...
  10. Boonham N., Perez L.G., Mendez M.S., Peralta E.L., Blockley A., Walsh K., Barker I., Mumford R.A. (2004): Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. Journal of Virological Methods, 116: 139-146. Go to original source... Go to PubMed...
  11. Capote N., Pastrana A.M., Aguado A., Torres P.S. (2012): Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In: Cumagun C.J. (ed.): Agricultural and Biological Sciences "Plant Pathology". Rijeka, InTech: 151-202. Go to original source...
  12. Cooke D.E.L., Schena L., Cacciola S.O. (2007): Tools to detect, identify and monitor Phytophthora species in natural ecosystems. Journal of Plant Pathology, 89: 13-28.
  13. Chen W., Dai J., Zhang H., Jiao H., Cheng J. Wu Y. (2014): Concentration and detection of tobacco etch virus from irrigation water using real-time PCR. Turkish Journal of Agriculture and Forestry, 38: 471-477. Go to original source...
  14. Cho M.S., Jeon Y.H., Kang M.J., Ahn H.I., Baek H.J., Na Y.W., Choi Y.M., Kim T.S. Park D.S. (2010): Sensitive and specific detection of phaseolotoxigenic and nontoxigenic strains of Pseudomonas syringae pv. phaseolicola by TaqMan real-time PCR using site-specific recombinase gene sequences. Microbiological Research, 165: 565-572. Go to original source... Go to PubMed...
  15. Clement J.A.J., Baldwin T.K., Magalon H., Glais I., Gracianne C., Andrivon D., Jacquot E. (2013): Specific detection and quantification of virulent/avirulent Phytophthora infestans isolates using a real-time PCR assay that targets polymorphisms of the Avr3a gene. Letters in Applied Microbiology, 56: 322-332. Go to original source... Go to PubMed...
  16. Cullen D.W., Hirsch, P.R. (1998): Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biology and Biochemistry, 30: 983-993. Go to original source...
  17. Dai J., Peng H., Chen W., Cheng J., Wu Y. (2013): Development of multiplex real time PCR for simultaneous detection of three Potyviruses in tobacco plants. Journal of Applied Microbiology, 114: 502-508. Go to original source... Go to PubMed...
  18. Didenko V.V. (2001): DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. BioTechniques, 31: 1106-1121. Go to original source... Go to PubMed...
  19. Diguta C.F., Rousseaux S., Weidmann S., Bretin N., Vincent B., Benatier M.G., Alexander H. (2010): Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiology Letter, 313: 81-87. Go to original source... Go to PubMed...
  20. Dreo T., Pirc M., Ravnikar M. (2012): Real-time PCR, a method fit for detection and quantification of Erwinia amylovora. Trees, 26: 165-178. Go to original source...
  21. Espy M.J., Uhl J.R., Sloan L.M., Buckwalter S.P., Jones M.F., Vetter E.A., Yao J.D.C., Wengenack N.L., Rosenblatt J.E., Cockerill F.R., Smith T.F. (2006): Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clinical Microbiology Reviews, 19: 165-256. Go to original source... Go to PubMed...
  22. Finetti-Sialer M.M., Ciancio A. (2005): Isolate-specific detection of Grapevine fanleaf virus from Xiphinema index through DNA-based molecular probes. Phytopathology, 95: 262-268. Go to original source... Go to PubMed...
  23. Francis M., Lin H., Rosa J.C, Doddapaneni H., Civerolo E.L. (2006): Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. European Journal of Plant Pathology, 115: 203-213. Go to original source...
  24. Fredslund J., Lange M. (2007): Primique: automatic design of specific PCR primers for each sequence in a family. BMC Bioinformatics, 8: 369. Go to original source... Go to PubMed...
  25. Galetto L., Bosco D., Marzachi C. (2005): Universal and group-specific real-time PCR diagnosis of flavescence dorée (16Sr-V), bois noir (16Sr-XII) and apple proliferation (16Sr-X) phytoplasmas from field-collected plant hosts and insect vectors. Annals of Applied Biology, 147: 191-201. Go to original source...
  26. Garrido C., Carbu M., Acreo F.J., Boonham N., Coyler A., Cantoral J.M., Budge G. (2009): Development of protocols for detection of Colletotrichum acutatum and monitoring of strawberry anthracnose using real-time PCR. Plant Pathology, 58: 43-51. Go to original source...
  27. Garrido C., Acero F.G.F., Carbu M., Rodriguez V.E.G., Liniero E., Cantoral J.M. (2012): Molecular microbiology applied to the study of phytopathogenic fungi. In: Magdeldin S. (ed.): Biochemistry, Genetics and Molecular Biology. Rijeka, InTech: 139-156. Go to original source...
  28. Giulietti A., Overbergh L., Valckx D., Decallone B., Bouillon R., Mathieu C. (2001): An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 25: 386-401. Go to original source... Go to PubMed...
  29. Goud J.C., Termorshuizen A.J. (2003): Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. European Journal of Plant Pathology, 109: 523- 534. Go to original source...
  30. Hadidi A., Levy L., Podleckis E.V. (1995): Polymerase chain reaction technology in plant pathology. In: Singh R.P., Singh U.S. (eds): Molecular Methods in Plant Pathology. London, CRC Press Inc.: 167-187. Go to original source...
  31. Haegi A., Catalano V., Luongo L., Vitale S., Scotton M., Ficcadenti N., Belisario A. (2013): A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology, 103: 802-810. Go to original source... Go to PubMed...
  32. Harper S.J., Ward L.I., Clover G.R.G. (2010): Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology, 100: 1282-1289. Go to original source... Go to PubMed...
  33. Hassain T., Singh B.P., Anwar F. (2014): A quantitative real-time PCR based method for the detection of Phytophthora infestans causing Late blight of potato, in infested soil. Saudi Journal of Biological Sciences, 21: 380-386. Go to original source... Go to PubMed...
  34. Hodgetts J., Boonham N., Mumford R., Dickinson M. (2009): Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group-specific detection of phytoplasmas. Applied and Environmental Biology, 75: 2945-2950. Go to original source... Go to PubMed...
  35. Hyndman D.L., Mitsuhashi M. (2003): PCR primer design. In: Bartlett M.S., Stirling D. (eds): PCR Protocols. Series: Methods in Molecular Biology, Vol. 226. 2 nd Ed. New York, Humana Press: 81-88. Go to original source...
  36. Ingle C.A., Kushner S.R. (1996): Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proceedings National Academy of Science USA, 93: 12926-12931. Go to original source... Go to PubMed...
  37. Ippolito A., Schena L., Nigro F., Ligorio V.S., Yaseen T. (2004): Real-time detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soil. European Journal of Plant Pathology, 110: 833-843. Go to original source...
  38. Ishiguro T., Saitoh J., Yawata H., Yamagishi H., Iwasaki S., Mitoma Y. (1995): Homogeneous qualitative assay of hepatitis C virus RNA by polymerase chain reaction in the presence of a fluorescent intercalater. Analytical Biochemistry, 229: 207-213. Go to original source... Go to PubMed...
  39. Johnson K.L., Walcott R.R. (2012): Progress towards a realtime PCR assay for the simultaneous detection of Clavibacter michiganensis subsp. michiganensis and Pepino mosaic virus in tomato seed. Journal of Phytopathology, 160: 353-363. Go to original source...
  40. Kaluzna M., Pulawska J., Mikicinski A. (2013): Evaluation of methods for Erwinia amylovora detection. Journal of Horticultural Research, 21: 65-71. Go to original source...
  41. Lamarche J., Stewart D., Pelletier G., Hamelin R.C., Tanguay P. (2014): Real-time PCR detection and discrimination of the Ceratocystis coerulescens complex and of the fungal species from the Ceratocystis polonica complex validated on pure cultures and bark beetle vectors. Canadian Journal of Forest Research, 44: 1103-1111. Go to original source...
  42. Li M., Y. Ishiguro Y., Otsubo K., Suzuki H., Tsuji T., Miyake N., Nagai H., Suga H., Kageyama K. (2014): Monitoring by real-time PCR of three water-borne zoosporic Pythium species in potted flower and tomato greenhouses under hydroponic culture systems. European Journal of Plant Pathology, 140: 229-242. Go to original source...
  43. Lievens B., Grauwet T.J.M.A., Cammue B.P.A., Thomma B.P.H.J. (2005): Recent developments in diagnostics of plant pathogens: a review. Recent Research Developments in Microbiology, 9: 57-79.
  44. Lopez-Fabuel I., Wetzel T., Bertolini E., Bassler A., Vidal E., Torres L.B., Yuste A., Olmos A. (2013): Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses. Journal of Virological Methods, 188: 21-24. Go to original source... Go to PubMed...
  45. Luigi M., Faggioli F. (2011): Development of quantitative real-time RT-PCR for the detection and quantification of Peach latent mosaic viroid. European Journal of Plant Pathology, 130: 109-116. Go to original source...
  46. Mahuku G.S., Platt H.W. (2002): Quantifying Verticillium dahliae in soils collected from potato fields using a competitive PCR assay. American Journal of Potato Research, 79: 107-117. Go to original source...
  47. Martin R.R., James D., Levesque C.A. (2000): Impacts of molecular diagnostic technologies on plant disease management. Annual Review of Phytopathology, 38: 207-239. Go to original source... Go to PubMed...
  48. Martin F.N., Tooley P.W., Blomquist C. (2004): Molecular detection of Phytophthora ramorum, the causal agent of sudden oak death in California, and two additional species commonly recovered from diseased plant material. Phytopathology, 94: 621-631. Go to original source... Go to PubMed...
  49. Mavrodieva V., Levy L., Gabriel D.W. (2004): Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology, 94: 61-68. Go to original source... Go to PubMed...
  50. Mbofung G.C.Y., Fessehaie A., Bhattacharyya M.K., Leandro L.F.S. (2011): A new TaqMan real-time polymerase chain reaction assay for quantification of Fusarium virguliforme in soil. Plant Disease, 95: 1420-1426. Go to original source... Go to PubMed...
  51. McCartney H.A., Foster S.J., Fraaije B.A., Ward, E. (2003): Molecular diagnostics for fungal plant pathogens. Pest Management Science, 59: 129-142. Go to original source... Go to PubMed...
  52. Mehle N., Nikolic P., Gruden K., Ravnikar M., Dermastia M. (2012): Real-time PCR for specific detection of three Phytoplasmas from the apple proliferation group. In: Dickinson M., Hodgetts J. (eds): Phytoplasma: Methods and Protocols. Series: Methods in Molecular Biology, Vol. 938. New York, Humana Press: 269-281. Go to original source...
  53. Mhlanga M.M., Malmberg L. (2001): Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 25: 463-471. Go to original source... Go to PubMed...
  54. Miller D.N. (2001): Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments. Journal of Microbiological Methods, 44: 49-58. Go to original source... Go to PubMed...
  55. Montes-Borrego M., Munoz-Ledesma F.J., Jimenez-Diaz R.M., Landa B.B. (2011): Real-time PCR quantification of Peronospora arborescens, the opium poppy downy mildew pathogen, in seed stocks and symptomless infected plants. Plant Disease, 95: 143-152. Go to original source... Go to PubMed...
  56. Morrison T.B., Weis J.J., Wittwer C.T. (1998): Quantification of low-copy transcripts by continuous SYBR green I monitoring during amplification. BioTechniques, 24: 954-962. Go to PubMed...
  57. Narayanasamy P. (2011): Detection of Virus and Viroid Pathogens in Plants. In: Microbial Plant Pathogens-Detection and Disease Diagnosis. Viral and Viroid Pathogens, Vol. 3. Dordrecht, Springer: 7-220. Go to original source...
  58. Okubara P.A., Schroeder K.L., Paulitz T.C. (2005): Real-time polymerase chain reaction: applications to studies on soilborne pathogens. Canadian Journal of Plant Pathology, 27: 300-313. Go to original source...
  59. Olexova L., Dovicovicova L., Kuchta T. (2004): Comparison of three types of methods for the isolation of DNA from flours, biscuits and instant paps. European Food Research and Technology, 218: 390-393. Go to original source...
  60. Palacio-Bielsa A., Cubero J., Cambra M.A., Collados R., Berruete I.M., Lopez M.M. (2011): Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Applied and Environmental Microbiology, 77: 89-97. Go to original source... Go to PubMed...
  61. Papayiannis L.C. (2014): Diagnostic real-time RT-PCR for the simultaneous detection of Citrus exocortis viroid and Hop stunt viroid. Journal of Virological Methods, 196: 93-9. Go to original source... Go to PubMed...
  62. Parisi O., Lepoivre P., Jijakli M.H. (2011): Development of a quick quantitative real-time PCR for the in vivo detection and quantification of Peach latent mosaic viroid. Plant Disease, 95: 137-142. Go to original source... Go to PubMed...
  63. Parker M.L., McDonald M.R., Boland G.J. (2014): Evaluation of air sampling and detection methods to quantify airborne ascospores of Sclerotinia sclerotiorum. Plant Disease, 98: 32-42. Go to original source... Go to PubMed...
  64. Pelosi C.S., Lourenco M.V., Silva M., Santos A.Z., Franca S.C., Marins M. (2013): Development of a TaqMan realtime PCR assay for detection of Leifsonia xyli subsp xyli. Tropical Plant Pathology, 38: 343-345. Go to original source...
  65. Reeleder R.D., Capell B.B., Tomlinson L.D., Hickey W.J. (2003): The extraction of fungal DNA from multiple large soil samples. Canadian Journal of Plant Pathology, 25: 182-191. Go to original source...
  66. Rizza S., Nobile G., Tessitori M., Catara A., Conte E. (2009): Real time RT-PCR assay for quantitative detection of Citrus viroid III in plant tissues. Plant Pathology, 58: 181-185. Go to original source...
  67. Roberts C.A., Dietzgen R.G., Heelan L.A., Maclean D.J. (2000): Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. Journal of Virology Methods, 88: 1-8. Go to original source... Go to PubMed...
  68. Schaad N.W., Frederick R.D., Shaw J., Schneider W.L., Hickson R., Petrillo M.D., Luster D.G. (2003): Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41: 305-324. Go to original source... Go to PubMed...
  69. Schena L., Ippolito A. (2003): Rapid and sensitive detection of Rosellinia necatrix in roots and soils by real time Scorpion-PCR. Journal of Plant Pathology, 85: 15-25.
  70. Schena L., Nigro F., Ippolito A., Gallitelli, D. (2004): Realtime quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110: 893-908. Go to original source...
  71. Schena L., Hughes K.J.D., Cooke D.E.L. (2006): Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7: 365-379. Go to original source... Go to PubMed...
  72. Schena L., Li Destri Nicosia M.G., Sanzani S.M., Faedda R., Ippolito A., Cacciola S.O. (2013): Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. Journal of Plant Pathology, 95: 7-24.
  73. Sharma S., Dasgupta I. (2012): Development of SYBR Green I based real-time PCR assays for quantitative detection of Rice tungro bacilliform virus and Rice tungro spherical virus. Journal of Virological Methods, 181: 86-92. Go to original source... Go to PubMed...
  74. Su'udi M., Kim J., Park J.M., Bae S.C., Kim D., Kim Y.H., Ahn I.P. (2013): Quantification of rice blast disease progressions through TaqMan real-time PCR. Molecular Biotechnology, 55: 43-48. Go to original source... Go to PubMed...
  75. Tessitori M., Rizza S., Reina A., Catara V. (2005): Real-time RT-PCR based on Sybr-Green I for the detection of citrus exocortis and citrus cachexia disease. In: Hilf M.E., Duran-Vila N., Rocha-Peña M.A. (eds): Proceedings 16th Conference of the International Organization of Citrus Virologists, Nov 3-6, 2004. Riverside, USA: 456-459. Go to original source...
  76. Tomlinson J.A., Baker I., Boonham N. (2007): Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 73: 4040-4047. Go to original source...
  77. Tsai Y.L., Olson B.H. (1991): Rapid method for direct extraction of DNA from soil and sediments. Applied and Environmental Microbiology, 57: 1070-1074. Go to original source... Go to PubMed...
  78. Ward L.I., Beales P.A., Barnes A.V., Lane C.R. (2004): A real-time PCR assay based method for routine diagnosis of Spongospora subterranea on potato tubers. Journal of Phytopathology, 152: 633-638. Go to original source...
  79. Weintraub P.G., Jones P. (2010): Phytoplasmas: genomes, plant hosts and vectors. Plant Pathology, 59: 1177-1178. Go to original source...
  80. Weller S.A., Beresford-Jones N.J., Hall J., Thwaites R., Parkinson N., Elphinstone J.G. (2007): Detection of Xanthomonas fragariae and presumptive detection of Xanthomonas arboricola pv. fragariae, from strawberry leaves, by real-time PCR. Journal of Microbiological Methods, 70: 379-383. Go to original source... Go to PubMed...
  81. Williams N., Hardy G.E.St.J., O'Brien P.A. (2009): Analysis of the distribution Phytophthora cinnamomi in soil at a disease site in Western Australia using nested PCR. Forest Pathology, 39: 95-109. Go to original source...
  82. Wittwer C.T., Herrman M.G., Gundry C.N., ElenitobaJohnson K.S.J. (2001): Real-time multiplex PCR assays. Methods, 25: 430-442. Go to original source... Go to PubMed...
  83. Wu J., Diao Y., Gu Y., Hu Z. (2011): Molecular detection of Pectobacterium species causing soft rot of Amorphophallus konjac. World Journal of Microbiology and Biotechnology, 27: 613-618. Go to original source...
  84. Xu R., Tambong J.T. (2011): A TaqMan real-time PCR assay targeting the cytochrome o ubiquinol oxidase subunit II gene for detection of several pathovars of Pseudomonas syringae. Canadian Journal of Plant Pathology, 33: 318-331. Go to original source...
  85. Yang J.G., Wang F.L., Chen D.X., Shen L.L., Qian Y.M., Liang Z.Y., Zhou W.C., Yan T.H. (2012): Development of a one-step immunocapture real-time RT-PCR assay for detection of Tobacco mosaic virus in soil. Sensors, 12: 16685-16694. Go to original source... Go to PubMed...
  86. Zhang X., Zhou G., Wang X. (2010): Detection of Wheat dwarf virus (WDV) in wheat and vector leafhopper (Psammotettix alienus Dahlb.) by real-time PCR. Journal of Virological Methods, 169: 416-419. Go to original source... Go to PubMed...
  87. Zhang P., Mar T.T., Liu W.W., Li L., Wang X.F. (2013): Simultaneous detection and differentiation of Rice black streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) by duplex real time RT-PCR. Virology Journal, 10: 24. Go to original source... Go to PubMed...
  88. Zhao Z., Yu Y., Zhang Z., Liang P., Ma Y., Li S., Wang H. (2013): A duplex, SYBR Green I-based RT-qPCR assay for the simultaneous detection of Apple chlorotic leaf spot virus and Cherry green ring mottle virus in peach. Virology Journal, 10: 255. Go to original source... Go to PubMed...
  89. Zouhar M., Mazáková J., Prokinová E., Váòová M., Ry¹ánek P. (2010): Quantification of Tilletia caries and Tilletia controversa mycelium in wheat apical meristem by realtime PCR. Plant Protection Science, 46: 107-115. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.