Plant Protect. Sci., 2016, 52(3):167-175 | DOI: 10.17221/70/2015-PPS

Isolation and identification of antifungal compounds produced by Bacillus Y-IVI for suppressing Fusarium wilt of muskmelonOriginal Paper

Qingyun Zhao1, 2, Xinlan Mei1, Yangchun Xu1
1 Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, P.R. China
2 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, P.R. China

The Bacillus strain Y-IVI was used in the biocontrol of muskmelon Fusarium wilt. It was identified as Bacillus subtilis. The antifungal compounds from the culture filtrate were purified by high performance liquid chromatography. Two series of homologous ion peaks were analysed by liquid chromatography-electrospray ionisation-mass spectrometry, one with molecular weights of 1028.7, 1042.7, and 1056.7 and the other with molecular weights of 1463, 1477, and 1491. The compounds were ascribed to iturin A and fengycin, respectively. The maximum production of iturin by Y-IVI was 89.75 mg/l. In conclusion, we provided biochemical evidence that strain Y-IVI was able to produce antifungal compounds and thus holds great potential for use in the biocontrol of Fusarium wilt disease.

Keywords: antifungal substance; Bacillus subtilis; biological control; Cucumis melo L.

Published: September 30, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhao Q, Mei X, Xu Y. Isolation and identification of antifungal compounds produced by Bacillus Y-IVI for suppressing Fusarium wilt of muskmelon. Plant Protect. Sci. 2016;52(3):167-175. doi: 10.17221/70/2015-PPS.
Download citation

References

  1. Beatty P.H., Jensen S.E. (2002): Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 48: 159-169. Go to original source... Go to PubMed...
  2. Besson F., Michel G. (1987): Isolation and characterization of new iturins: iturin D and iturin E. Journal of Antibiotics, 40: 437-442. Go to original source... Go to PubMed...
  3. Bie X.M., Lu Z.X., Lu F.X. (2009): Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. Journal of Microbiological Methods, 79: 272-278. Go to original source... Go to PubMed...
  4. Chung S., Kong H., Buyer J.S., Lakshman D.K., Lydon J., Kim S.D., Roberts D.P. (2008): Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 80: 115-123. Go to original source... Go to PubMed...
  5. De Cal A., Sztejnberg A., Sabuquillo P., Melgarejo P. (2009): Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biological Control, 51: 480-486. Go to original source...
  6. Dubey S.K., Padmanabhan P., Purohit H.J., Upadhyay S.N. (2003): Methanotrophs tracking and their diversity in paddy soil: a molecular approach. Current Science, 85: 92-95.
  7. Eckart K. (1994): Mass spectrometry of cyclic peptides. Mass Spectrum Reviews, 13: 23-55. Go to original source...
  8. Hsieh F.C., Lin T.C., Meng M., Kao S.S. (2008): Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide Iturin A. Current Microbiology, 56: 1-5. Go to original source... Go to PubMed...
  9. Huang J.F., Wei Z., Tan S.Y., Mei X.L., Shen Q.R., Xu Y.C. (2014): Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62. Journal of Agricultural and Food Chemistry, 62: 10708-10716. Go to original source... Go to PubMed...
  10. Jourdan E., Henry G., Duby F., Dommes J., Barthelemy J.P., Thonart P., Ongena M. (2009): Insights into the defenserelated events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions, 22: 456-468. Go to original source... Go to PubMed...
  11. Kajimura Y., Sugiyama M., Kaneda M. (1995): Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. Journal of Antibiotics, 48: 1095-1103. Go to original source... Go to PubMed...
  12. Kowall M., Vater J., Kluge B., Stein T., Franke P., Ziessow D. (1998): Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. Journal of Colloid and Interface Science, 204: 1-8. Go to original source... Go to PubMed...
  13. Lee Y.K., Senthilkumar M., Kim J.H., Swarnalakshmi K., Annapurna K. (2008): Purification and partial characterization of antifungal metabolite from Paenibacillus lentimorbus WJ5. World Journal of Microbiology and Biotechnology, 24: 3057-3062. Go to original source...
  14. Li L., Mo M., Qu Q., Luo H., Zhang K.Q. (2007): Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. European Journal of Plant Pathology, 117: 329-340. Go to original source...
  15. Li X.Y., Yang J.J., Mao Z.C., Ho H.H., Wu Y.X., He Y.Q. (2014): Enhancement of biocontrol activities and cyclic lipopeptides production by chemical mutagenesis of Bacillus subtilis XF-1, a biocontrol agent of Plasmodiophora brassicae and Fusarium solani. Indian Journal of Microbiology, 54: 476-479. Go to original source... Go to PubMed...
  16. Ma Y., Chang Z.Z., Zhao J.T., Zhou M.G. (2008): Antifungal activity of Penicillium striatisporum Pst10 and its biodoi: 10.17221/70/2015-PPScontrol effect on Phytophthora root rot of chilli pepper. Biological Control, 44: 24-31. Go to original source...
  17. Ma Z.W., Hu J.C. (2014): Production and characterization of iturinic lipopeptides as antifungal agents and biosurfactants produced by a marine pinctada martensii-derived Bacillus mojavensis B0621A. Applied Biochemistry and Biotechnology, 173: 705-715. Go to original source... Go to PubMed...
  18. Mizumoto S., Shoda M. (2007): Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Applied Microbiology and Biotechnology, 76: 101-108. Go to original source... Go to PubMed...
  19. Nagorska K., Bikowski M., Obuchowski M. (2007): Multi cellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polomica, 54: 495-508. Go to original source...
  20. Ongena M., Jacques P. (2008): Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16: 115-125. Go to original source... Go to PubMed...
  21. Peypoux F., Pommier M.T., Marion D., Ptak M., Das B.C., Michel G. (1986): Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. Journal of Antibiotics, 39: 636-641. Go to original source... Go to PubMed...
  22. Rautela R., Singh A.K., Shukla A., Cameotra S.S. (2014): Lipopeptides from Bacillus strain AR2 inhibits biofilmn formation by Candida albicans. Antonie van Leeuwenhoek, 105: 809-821. Go to original source... Go to PubMed...
  23. Raza W., Yang X.M., Wu H.S., Wang Y., Xu Y.C., Shen Q.R. (2009): Isolation and characterization of fusaricidin-type compound producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. European Journal of Plant Pathology, 125: 471-483. Go to original source...
  24. Romero D., de Vicente A., Rakotoaly R.H., Dufour S.E., Veening J.W., Arrebola E., Cazorla F.M., Kuipers O.P., Paquot M., Pérez-García A. (2007): The iturin and fengycin families of lipopeptides are key factor in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20: 430-440. Go to original source... Go to PubMed...
  25. Sambrook J., Russell D.W. (2001): Molecular Cloning. A Laboratory Manual. New York, Cold Spring Harbor Laboratory.
  26. Song B., Rong Y.J., Zhao M.X., Chi Z.M. (2013): Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic. Applied Microbiology and Biotechnology, 97: 7141-7150. Go to original source... Go to PubMed...
  27. Tawfic A.A., Allam A.D.A. (2004): Improving cumin production under soil infestation with Fusarium wilt pathogen: II-field trial of different landraces and seed treatments. Asst Univ Bulletin of Environmental Research, 7: 47-64. Go to original source...
  28. Vanittanakom N., Loeffler W. (1986): Fengycin - a novel antifungal lipopeptide antibiotics produced by Bacillus subtilis F-29-3. Journal of Antibiotics, 39: 888-901. Go to original source... Go to PubMed...
  29. Vater J., Kablitz B., Wilde C., Franke P., Mehta N., Cameotra S.S. (2002): Matrix-assisted laser desorption ionizationtime of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolate from petroleum sludge. Applied Environmental Microbiology, 68: 6210-6219. Go to original source... Go to PubMed...
  30. Williams B.H., Hathout Y., Fenselau C. (2002): Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. Journal of Mass Spectrometry, 37: 259-264. Go to original source... Go to PubMed...
  31. Wu H.S., Yang X.M., Fan J.Q., Miao W.G., Ling N., Xu Y.C., Huang Q.W., Shen Q.R. (2009): Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl, 54: 287-300. Go to original source...
  32. Yang L.P., Xie J.T., Jiang D.H., Fu Y.P., Li G.Q., Lin F.C. (2008): Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World Journal of Microbiology and Biotechnology, 24: 909-915. Go to original source...
  33. Yuan J., Li B., Zhang N., Waseem R., Shen Q.R., Huang Q.W. (2012): Production of bacillomycin- and macrolactintype antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens. Journal of Agricultural and Food Chemistry, 60: 2976-2981. Go to original source... Go to PubMed...
  34. Zhang T., Shi Z.Q., Hu L.B., Cheng L.G., Wang F. (2008): Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World Journal of Microbiology and Biotechnology, 24: 783-788. Go to original source...
  35. Zhao Q.Y., Dong C.X., Yang X.M., Mei X.L., Ran W., Shen Q.R., Xu Y.C. (2011): Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Applied Soil Ecology, 47: 67-75. Go to original source...
  36. Zhao Q.Y., Ran W., Wang H., Li X., Shen Q.R., Shen S.Y., Xu Y.C. (2013): Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl, 58: 283-292. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.