Plant Protect. Sci., 2020, 56(4):285-291 | DOI: 10.17221/93/2019-PPS

Developing a decision support tool to forecast the abundance of the cabbage stem weevil in winter oilseed rapeOriginal Paper

Michael Eickermann ORCID...*, Franz Kai Ronellenfitsch, Juergen Junk
Luxembourg Institute of Science and Technology, Belvaux, Luxembourg

Reducing the use of pesticides in agricultural systems is a prerequisite for sustainable agriculture and, therefore, knowledge on the factors that influence the regional insect pest densities is necessary. Based on multi-site and multi-annual observations of the cabbage stem weevil [Ceutorhynchus pallidactylus (Marsham, 1802)] in winter oilseed rape (Brassica napus Linnaeus) and the corresponding meteorological measurements, a statistical relationship for forecasting the abundance was derived. The model explains 84% of the variation of the data set. The remaining 16% might be explained by the landscape effects and agricultural practices, such as crop protection. Based on the statistical relationship between the mean winter air temperature and the abundance of the cabbage stem weevil in the winter oilseed rape, risk maps were derived as a forecast tool for practical farming.

Keywords: Ceutorhynchus pallidactylus; forecast system; Brassica napus; risk maps; yellow water trap

Published: December 31, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Eickermann M, Ronellenfitsch FK, Junk J. Developing a decision support tool to forecast the abundance of the cabbage stem weevil in winter oilseed rape. Plant Protect. Sci. 2020;56(4):285-291. doi: 10.17221/93/2019-PPS.
Download citation

References

  1. Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C., Farrar J., Good J.E.G., Harrington R., Hartley S., Jones T.H., Lindroth R.L., Press M.C., Symrnioudis I., Watt A.D., Whittaker J. (2002): Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1-16. Go to original source...
  2. Beyer M., El Jarroudi M., Junk J., Pogoda F., Dubos T., Görgen K., Hoffmann L. (2012): Spring air temperature accounts for the bimodal temporal distribution of Septoria tritici epidemics in the winter wheat stands of Luxembourg. Crop Protection, 42: 250-255. Go to original source...
  3. Damos P. (2015): Modular structure of web-based decision support systems for integrated pest management. A review. Agronomy for Sustainable Development, 35: 1347-1372. Go to original source...
  4. Eickermann M., Ulber B. (2010): Screening of oilseed rape and other brassicaceous genotypes for susceptibility to Ceutorhynchus pallidactylus (Mrsh.). Journal of Applied Entomology, 134: 542-550. Go to original source...
  5. Eickermann M., Junk J., Görgen K., Hoffmann L., Beyer M. (2013): Ensemble-based analysis of regional climate change effects on the pod midge (Dasineura brassicae Winn.) in oilseed rape. IOBC-WPRS Bulletin, 96: 23-28.
  6. Eickermann M., Ulber B., Hoffmann L., Junk J. (2014a): Improving phenological forecasting models for rape stem weevil, Ceutorhynchus napi Gyll., based on long-term multi-site datasets. Journal of Applied Entomology, 138: 754-762. Go to original source...
  7. Eickermann M., Beyer M., Goergen K., Hoffmann L., Junk J. (2014b): Shifted migration of the rape stem weevil (Ceutorhynchusnapi) linked to climate change. European Journal of Entomology, 111: 243-250. Go to original source...
  8. Eickermann M., Junk J., Hoffmann L., Beyer M. (2015): Forecasting the breaching of the control threshold for Ceutorhynchus pallidactylus in oilseed rape. Agricultural ad Forest Entomology, 17: 71-76. Go to original source...
  9. Ferguson A.W., Skellern M.P., Andreas J., von Richthofen J.-S., Watts N.P., Bardsley E., Murray D.A., Cook S.M. (2015): The potential of decision support systems to improve risk assessment for pollen beetle management in winter oilseed rape. Pest Management Science, 72: 609-617. Go to original source... Go to PubMed...
  10. Hahn D.A., Denlinger D.L. (2011): Energetics of insect diapause. Annual Review of Entomology, 56: 103-121. Go to original source... Go to PubMed...
  11. Hervé M. (2017): Breeding for insect resistance in oilseed rape: Challenges, current knowledge and perspectives. Plant Breeding, 137: 27-34. Go to original source...
  12. Juhel A.S., Barbu C.M., Franck P., Roger-Estrade J., Butier A., Bazot M., Valantin-Morison M. (2017): Characterization of the pollen beetle, Brassicogethes aeneus, dispersal from woodlands to winter oilseed rape fields. PLoS ONE 12(8). doi: 10.1371/journal.pone.0183878 Go to original source... Go to PubMed...
  13. Junk J., Eickermann M., Görgen K., Beyer M., Hoffmann L. (2012): Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)) in winter oilseed rape (Brassica napus L.). The Journal of Agricultural Science, 150: 191-202. Go to original source...
  14. Junk J., Jonas M., Eickermann M. (2016): Assessing meteorological key factors influencing crop invasion by pollen beetle (Meligethes aeneus F.) - past observations and future perspectives. Meteorologische Zeitschrift, 25: 357-364. Go to original source...
  15. Juran I., Gotling Čuljak T., Grubišić D. (2011): Rape Stem Weevil (Ceutorhynchus napi Gyll. 1837) and Cabbage Stem Weevil (Ceutorhynchus pallidactylus Marsh. 1802) (Coleoptera: Curculionidae) - important oilseed rape pests. Agriulturae Conspectus Scientificus, 76: 93-100.
  16. Klueken A.M., Hau B., Ulber B., Poehling H.-M. (2009): Forecasting migration of cereal aphids (Hemiptera: Aphididae) in autumn and spring. Journal of Applied Entomology, 133: 328-344. Go to original source...
  17. Klem K., Spitzer T. (2017): Prediction model for cabbage stem weevil Ceutorhynchus pallidactylus Mrsh. occurrence on winter rape based on an artificial neural network Agricultural and Forest Entomology, 19: 302-308. Go to original source...
  18. Lefebvre M., Langrell S.R.H., Gomez-y-Paloma S. (2015): Incentives and policies for integrated pest management in Europe: a review. Agronomy for Sustainable Development, 35: 27-45. Go to original source...
  19. Moser D., Drapela T., Zaller J.G., Frank T. (2009): Interacting effects of wind direction and resource distribution on insect pest densities. Basic and Applied Ecology, 10: 208-215. Go to original source...
  20. Rusch A., Valantin-Morison M., Roger-Estrade J., Sarthou J.-P. (2012): Local and landscape determinants of pollen beetle abundance in overwintering habitats. Agricultural and Forest Entomology, 14: 37-47. Go to original source...
  21. Rusch A., Valantin-Morison M., Sarthou J.P., Roger-Estrade J. (2013): Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems and Environment, 166: 118-125. Go to original source...
  22. Schütte F. (1970): Nutzung von Schwellenwerten für langfristige Prognosen. Journal of Plant Disease and Plant Protection, 77: 648-655.
  23. Spitzer T., Matušinský P., Spitzerová D., Bílovský J., Kazda J.: (2014). Effect of flight activity of stem weevils (Ceutorhynchus napi, C. pallidactylus) and application time on insecticide efficacy and yield of winter oilseed rape. Plant Protection Science, 50: 129-134. Go to original source...
  24. Venäläinen A., Heikinheimo M. (2002): Meteorological data for agricultural applications. Physics and Chemistry of the Earth, Parts A/B/C, 27: 1045-1050. Go to original source...
  25. Williams I.H. (2010): The Major Insect Pests of Oilseed Rape in Europe and Their Management: An Overview. In: Williams I.H. (ed.): Biocontrol-Based Integrated Management of Oilseed Rape Pests. Dordrecht, Springer. Go to original source...
  26. Witten I.H., Frank E., Hall M.A. (2011): Data Mining: Practical Machine Learning Tools and Techniques. 3 rd Ed., Burlington, Morgan Kaufmann. Go to original source...
  27. Zaller J.G., Moser D., Drapela T., Schmöger C., Frank T. (2008): Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic and Applied Ecology, 9: 682-690. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.