Plant Protect. Sci., 2022, 58(2):139-149 | DOI: 10.17221/69/2021-PPS

Trichoderma asperellum (NST-009): A potential native antagonistic fungus to control Cercospora leaf spot and promote the growth of 'Green Oak' lettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic systemOriginal Paper

Athakorn Promwee*, Warin Intana
School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand

Leaf spot caused by Cercospora lactucae-sativae is one of the most damaging diseases of 'Green Oak' lettuce in Thailand. This study was conducted to estimate the effectiveness of Trichoderma asperellum NST-009, a native strain in Thailand, to manage the leaf spot disease and enhance the growth of 'Green Oak' lettuce in a nutrient film technique (NFT) hydroponic system. In vitro tests showed that T. asperellum NST-009 significantly inhibited the mycelial growth of C. lactucae-sativae by 72.50%, and its antifungal metabolite from the culture filtrate of T. asperellum NST-009 inhibited the mycelial growth of C. lactucae-sativae by 93.26%. In the hydroponics experiment, T. asperellum NST-009 reduced the disease severity index by 67.51% compared to the inoculated control and significantly stimulated the growth of the 'Green Oak' lettuce in terms of the plant height (8.62%), canopy width (16.67%), leaf number (18.39%), shoot fresh weight (25.71%), root fresh weight (39.26%), and total P in the leaves (31.45%) compared to the control. In addition, T. asperellum NST-009 was found to survive in both the lettuce leaves and roots at 100.00%.

Keywords: biological control; beneficial microoganism; plant growth promoting fungi; PGPF; soilless culture

Published: March 28, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Promwee A, Intana W. Trichoderma asperellum (NST-009): A potential native antagonistic fungus to control Cercospora leaf spot and promote the growth of 'Green Oak' lettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system. Plant Protect. Sci. 2022;58(2):139-149. doi: 10.17221/69/2021-PPS.
Download citation

References

  1. Abo-Elyousr K.A., Abdel-Hafez S.I., Abdel-Rahim I.R. (2014): Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162: 567-574. Go to original source...
  2. AOAC (2000): Official Methods of Analysis. Gaithersburg, AOAC International.
  3. Azarmi R., Hajieghrari B., Giglou A. (2011): Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10: 5850-5855. Go to original source...
  4. Baiyee B., Ito S., Sunapapo A. (2019): Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology, 106: 96-101. Go to original source...
  5. Brožová J. (2004): Mycoparasitic fungi Trichoderma spp. in plant protection - Review. Plant Protection Science, 40: 63-74. Go to original source...
  6. Camejo D., Frutos A., Mestre T.C., del Carmen Piñero M., Rivero R.M., Martínez V. (2020): Artificial light impacts the physical and nutritional quality of lettuce plants. Horticulture, Environment, and Biotechnology, 61: 69-82. Go to original source...
  7. Chairin T., Pornsuriya C., Thaochan N., Sunpapao A. (2017): Corynespora cassiicola causes leaf spot disease on lettuce (Lactuca sativa) cultivated in hydroponic systems in Thailand. Australasian Plant Disease Notes, 12: 16. doi: 10.1007/s13314-017-0241-x Go to original source...
  8. Charoenrak P., Chamswarng C., Intanoo W., Keawprasert N. (2019): The effects of vermicompost mixed with Trichoderma asperellum on the growth and Pythium root rot of lettuces. International Journal of Geomate, 17: 215-221. Go to original source...
  9. Chen Z., Cuervo D.P., Müller J.A., Wiessner A., Köser H., Vymazal J., Kuschk P. (2016): Hydroponic root mats for wastewater treatment - A review. Environmental Science and Pollution Research, 23: 15911-15928. Go to original source... Go to PubMed...
  10. Galletti S., Burzi P.L., Cerato C., Marinello S., Sala E. (2008): Trichoderma as a potential biocontrol agent for Cercospora leaf spot of sugar beet. BioControl, 53: 917-930. Go to original source...
  11. Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004): Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43-56. Go to original source... Go to PubMed...
  12. Izzati M.Z.N.A., Abdullah F. (2008): Disease suppression in Ganoderma-infected oil palm seedlings treated with Trichoderma harzianum. Plant Protection Science, 44: 101-107. Go to original source...
  13. Janardan Y., Verma J.P., Tiwari K.N. (2011): Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences, 4: 291-299. Go to original source...
  14. Kabiri R., Nasibi F., Farahbakhsh H. (2014): Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protection Science, 50: 43-51. Go to original source...
  15. Kham-un P., Cheewangkoon R., To-anun C. (2017): Controlling Cercospora lactucae-sativae causes lettuce leaf spot disease using antagonistic yeasts. International Journal of Agricultural Technology, 13: 153-162.
  16. Khan M.F., Smith L.J. (2005): Evaluating fungicides for controlling Cercospora leaf spot on sugar beet. Crop Protection, 24: 79-86. Go to original source...
  17. Khunti J.P., Bhoraniya M.E., Vora V.D. (2005): Management of powdery mildew and Cercospora leaf spot of mungbean by some systemic fungicides. Legume Research, 28: 65-67.
  18. Koohakan P., Jeanaksorn T., Nuntagij I. (2008): Major diseases of lettuce grown by commercial nutrient film technique in Thailand. Current Applied Science and Technology, 8: 56-63.
  19. Nawrocka J., Małolepsza U. (2013): Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67: 149-156. Go to original source...
  20. Nawrocka J., Szczech M., Małolepsza U. (2018): Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Protection Science, 54: 17-23. Go to original source...
  21. Nguanhom J., Cheewangkoon R., Groenewald J.Z., Braun U., To-anun C., Crous P.W. (2015): Taxonomy and phylogeny of Cercospora spp. from Northern Thailand. Phytotaxa, 233: 27-48. Go to original source...
  22. Nieto-Jacobo M.F., Steyaert J.M., Salazar-Badillo F.B., Nguyen D.V., Rostás M., Braithwaite M., De Souza J.T., Jimenez-Bremont J.F., Ohkura M., Stewart A., Mendoza-Mendoza A. (2017): Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers in Plant Science, 8: 102. doi: 10.3389/fpls.2017.00102 Go to original source... Go to PubMed...
  23. Promwee A., Issarakraisila M., Intana W., Chamswarng C., Yenjit P. (2014): Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. Journal of Agricultural Science, 6: 8-20. Go to original source...
  24. Promwee A., Yenjit P., Issarakraisila M., Intana W., Chamswarng C. (2017): Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees. Journal of Plant Diseases and Protection, 124: 41-50. Go to original source...
  25. Ramesh A.M., Zacharia S. (2017): Efficacy of bio-agents and botanicals against leaf spot (Cercospora arachidicola Hori) of groundnut (Arachis hypogaea L.). Journal of Pharmacognosy and Phytochemistry, 6: 504-506.
  26. Redda E.T., Ma J., Mei J., Li M., Wu B., Jiang X. (2018): Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea. European Journal of Experimental Biology, 8: 1-8.
  27. Ruangwong O.U., Wonglom P., Phoka N., Suwannarach N., Lumyong S., Ito S.I., Sunpapao A. (2021): Biological control activity of Trichoderma asperelloides PSU-P1 against gummy stem blight in muskmelon (Cucumis melo). Physiological and Molecular Plant Pathology, 115: 101663. doi: 10.1016/j.pmpp.2021.101663 Go to original source...
  28. Srimai K., Akarapisarn A. (2014): Bacillus subtilis LBF02 as biocontrol agent against leaf spot diseases caused by Cercospora lactucae-sativae in lettuce. Journal of Agricultural Science, 6: 151-158. Go to original source...
  29. Stewart A., Hill R. (2014): Applications of Trichoderma in plant growth promotion. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (eds). Biotechnology and Biology of Trichoderma. Amsterdam, Elsevier: 415-428. Go to original source...
  30. Suwan N., Nuandee N., Akimitsu K., Nalumpang S. (2012): Analysis of β-tubulin gene from carbendazim resistant isolates of Cercospora lactucae-sativae on lettuce in Thailand. Journal of Agricultural Technology, 8: 711-723.
  31. Thomas A., Saravanakumar D. (2019): Effect of host extract on growth and sporulation of Cercospora lactucae-sativae. Australasian Plant Disease Notes, 14: 1-4. Go to original source...
  32. Thongkamngam T., Jaenaksorn T. (2017): Fusarium oxysporum (F221-B) as biocontrol agent against plant pathogenic fungi in vitro and in hydroponics. Plant Protection Science, 53: 85-95. Go to original source...
  33. To-Anun C., Hidayat I., Meeboon J. (2011): Genus Cercospora in Thailand: Taxonomy and phylogeny (with a dichotomous key to species). Plant Pathology and Quarantine, 1: 11-87. Go to original source...
  34. Trkulja N., Milosavljević A., Stanisavljević R., Mitrović M., Jović J., Toševski I., Bošković J. (2015): Occurrence of Cercospora beticola populations resistant to benzimidazoles and demethylation-inhibiting fungicides in Serbia and their impact on disease management. Crop Protection, 75: 80-87. Go to original source...
  35. Unartngam J., Srithongkum B., Intanoo W., Charoenrak P., Chamswarng C. (2020): Morphological and molecular based identification of Trichoderma CB-Pin-01 biological control agent of plant pathogenic fungi in Thailand. International Journal of Agricultural Technology, 16: 175-188.
  36. Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. (2008): Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40: 1-10. Go to original source...
  37. Waghunde R.R., Shelake R.M., Sabalpara A.N. (2016): Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11: 1952-1965. Go to original source...
  38. Wonglom P., Daengsuwan W., Ito S., Sunpapao A. (2019): Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved. Physiological and Molecular Plant Pathology, 107: 1-7. Go to original source...
  39. Wonglom P., Ito S.I., Sunpapao A. (2020): Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology, 43: 100867. doi: 10.1016/j.funeco.2019.100867 Go to original source...
  40. Yedidia I., Srivastva A.K., Kapulnik Y., Chet I. (2001): Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235: 235-242. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.