Plant Protect. Sci., 2024, 60(3):278-287 | DOI: 10.17221/8/2024-PPS

Enhancing pest management in sugar beet cultivation: impact of variety selection and insecticide seed treatments on sugar beet flea beetles and weevilsOriginal Paper

Darija Lemic1,2, Mario Schumann3, Ralf Tilcher3, Olaf Czarnecki3, Katarina M. Mikac4, Domagoj Vučemilović-Jurić1, Helena Viric Gasparic1,2
1 Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
2 Green Environmental Research Ltd., Zagreb, Croatia
3 KWS SAAT SE & Co., Einbeck, Germany
4 School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, Australia

This study focused on evaluating the effectiveness of seed treatments and different sugar beet varieties in controlling flea beetles (Chaetocnema tibialis) and sugar beet weevils (Asproparthenis punctiventris) in Croatia. The field trials were conducted in Vukovar-Sirmia County and targeted the developmental stages of sugar beet from BBCH 12 to BBCH 31. Although the sowing was done within the optimal period, no clear pattern between germination of the seeds and susceptibility was identified as the results showed different responses at different development stages and among the three variants. The experimental design comprised no insecticide, thiamethoxam + tefluthrin, cyantraniliprole, flupyradifurone and Beauveria bassiana + Metarhizium anisopliae. The results show that the treatments with thiamethoxam + tefluthrin effectively reduced pest damage only at the critical stages of development. The current findings suggest that While some of these alternative methods offer good control, they may prove insufficient when applied individually. Hence, integrating them into a comprehensive pest management approach could be necessary for effectively safeguarding sugar beet yields. Further studies should explore potential additive or synergistic benefits to enhance these strategies.

Keywords: sugar beet varieties; IPM; Chaetocnema tibialis; Asproparthenis punctiventris; pesticides; seed coating

Received: January 12, 2024; Revised: April 17, 2024; Accepted: April 30, 2024; Prepublished online: July 1, 2024; Published: July 9, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lemic D, Schumann M, Tilcher R, Czarnecki O, Mikac KM, Vučemilović-Jurić D, Viric Gasparic H. Enhancing pest management in sugar beet cultivation: impact of variety selection and insecticide seed treatments on sugar beet flea beetles and weevils. Plant Protect. Sci. 2024;60(3):278-287. doi: 10.17221/8/2024-PPS.
Download citation

References

  1. Barić B., Pajač Živković I. (2020): Načela Integrirane Zaštite Bilja; University of Zagrebu, Faculty of Agriculture, Zagreb, Croatia. (in Croatian)
  2. Bass C., Puinean A.M., Zimmer C.T., Denholm I., Field L.M., Foster S.P., Gutbrod O., Nauen R., et al. (2014): The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51: 41-51. Go to original source... Go to PubMed...
  3. Bažok R. (2006): Žičnjaci - Važni štetnici ratarskih kultura. Glasilo Biljne Zaštite, 6: 3-10. (in Croatian)
  4. Bažok R. (2010): Suzbijanje Štetnika u Proizvodnji Šećerne Repe. Glasilo Biljne Zaštite, 10: 153-165. (in Croatian)
  5. Bažok R., Buketa M., Lopatko D., Ljikar K. (2012): Suzbijanje Štetnika Šećerne Repe Nekad i Danas. Glasilo Biljne Zaštite, 12: 414-428. (in Croatian)
  6. Bažok R., Gotlin Čuljak T., Grubišić D. (2014): Integrirana Zaštita Bilja Na Primjerima Dobre Prakse. Glasilo Biljne Zaštite, 14: 357-390. (in Croatian)
  7. Bažok R., Barić K., Čačija M., Drmić Z., Dermić E., Gotlin Čuljak T., Grubišić D., et al. (2015): Šećerna repa: zaštita od štetnih organizama u sustavu integrirane biljne proizvodnje. In: Bažok, R. (ed.), University of Zagreb, Faculty of Agriculture: 143. (in Croatian)
  8. Bažok R., Šatvar M., Radoš I., Drmić Z., Lemić D., Čačija M., Virić Gašparić H. (2016): Comparative efficacy of classical and biorational insecticides on sugar beet weevil, Bothynoderes punctiventris Germar (Coleoptera: Curculionidae). Plant Protection Science, 52: 134-141. Go to original source...
  9. Bažok R., Lemic D., Čačija M., Kadoić Balaško M., Virić Gašparić H., Skendžić S., Šutić A., Glušić P., et al. (2022): Smanjena osjetljivost repina buhača na piretroide- još jedna ozbiljna prijetnja održivom uzgoju šećerne repe. Zbornik Sažetaka 65. Seminara Biljne Zaštite, 52-53. (in Croatian)
  10. BCPC (2023): Compendium of Pesticide Common Names: tefluthrin. BCPC. Available at http://www.bcpcpesticidecompendium.org/tefluthrin.html
  11. Behie S.W., Jones S.J., Bidochka M.J. (2015): Plant tissue localisation of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13: 112-119. Go to original source...
  12. Bleiholder H., Weber E., Lancashire P., Feller C., Buhr L., Hess M., Wicke H., Hack H., et al. (2001): Growth Stages of Mono-and Dicotyledonous Plants. BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry: Berlin and Braunschweig.
  13. Byrne F.J., Toscano N.C. (2006): Uptake and persistence of imidacloprid in grapevines treated by chemigation. Crop Protection, 8: 831-834. Go to original source...
  14. Castle S.J., Byrne F.J., Bi J.L., Toscano N.C. (2005): Spatial and temporal distribution of imidacloprid and thiamethoxam in citrus and impact on Homalodisca coagulata populations. Pest Management Science, 61: 75-84. Go to original source... Go to PubMed...
  15. CBS (2022): Croatian Bureau of Statistics Croatian Bureau of Statistics. Areas and Production of Cereals and Other Crops. Provisional Data. Available at https://podaci.dzs.hr/2021/en/10683
  16. Čamprag D. (1973): Najvažnije štetočine šećerne repe u Jugoslaviji, Mađarskoj, Rumuniji i Bugarskoj, sa Posebnim osvrtom na važnije štetne vrste; Poljoprivredni Fakultet, Institut za Zaštitu Bilja Novi Sad: Novi Sad, Serbia: 343-352. (in Serbian)
  17. Čamprag D. (1983): Štetočine i paraziti ratarskih kultura. Priručnik Izvještajne i Prognozne Službe Zaštite Poljoprivrednih Kultura. Belgrade, Serbia: 168-216. (in Serbian)
  18. Čamprag D.S., Sekulić R.R., Kereši T.B. (2006): Forecasting of major sugarbeet pest occurrence in serbia during the period 1961-2004. Zbornik Matice srpske za prirodne nauke, 110: 187-194. Go to original source...
  19. Dobrinčić R. (2002): Prednosti i nedostaci tretiranja sjemena ratarskih kultura insekticidima. Glasilo Biljne zaštite, 2: 37-41. (in Croatian)
  20. EFSA (2018a): European food safety authority peer review of the pesticide risk assessment for bees for the active substance imidacloprid considering the uses as seed treatments and granules. EFSA Journal, 16. doi:10.2903/j.efsa.2018.5178. Go to original source... Go to PubMed...
  21. EFSA (2018b): European food safety authority peer review of the pesticide risk assessment for bees for the active substance clothianidin considering the uses as seed treatments and granules. EFSA Journal, 16: e05177. doi:10.2903/j.efsa.2018.5177. Go to original source... Go to PubMed...
  22. EFSA (2018c): European food safety authority peer review of the pesticide risk assessment for bees for the active substance thiamethoxam considering the uses as seed treatments and granules. EFSA Journal, 16. doi:10.2903/j.efsa.2018.5179. Go to original source... Go to PubMed...
  23. EC (2013): European Commission Implementing Regulation (EU) No. 485/2013 amending implementing regulation (EU) No. 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds. Official Journal of the European Union, 139: 12-26.
  24. Francis F., Then C., Francis A., Gbangbo Y.A.C., Iannello L., Ben Fekih I. (2022): Complementary strategies for biological control of aphids and related virus transmission in sugar beet to replace neonicotinoids. Agriculture, 12: 1663. Go to original source...
  25. Francis S.A., Luterbacher M.C. (2003): Identification and exploitation of novel disease resistance genes in sugar beet. Pest Management Science, 59: 225-230. Go to original source... Go to PubMed...
  26. Furlan L., Kreutzweiser D. (2015): Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Environmental Science and Pollution Research, 22: 135-147. Go to original source... Go to PubMed...
  27. Grimmer M.K., Bean K.M.R., Qi A., Stevens M., Asher M.J.C. (2008): The action of three beet yellows virus resistance QTLs depends on alleles at a novel genetic locus that controls symptom development. Plant Breeding, 127: 391-397. Go to original source...
  28. Hauer M., Hansen A.L., Manderyck B., Olsson Å., Raaijmakers E., Hanse B., Stockfisch N., Märländer B. (2017): neonicotinoids in sugar beet cultivation in Central and Northern Europe: Efficacy and environmental impact of neonicotinoid seed treatments and alternative measures. Crop Protection, 93: 132-142. Go to original source...
  29. Harrison-Dunn A.-R. (2021): Why Are Banned 'Bee-Killer' Neonicotinoids Still Being Used in Europe? - Modern Farmer. Available at https://modernfarmer.com/2021/03/why-are-banned-bee-killer-neonicotinoids-still-being-used-in-europe/
  30. Holy K., Skuhrovec, J. (2020): Rýhonosec řepný - škůdce cukrovky z červeného seznamu (Sugar beet weevil - red-listed sugar beet pest). Listy Cukrovarnické a Řepařské, 136: 371-375. (in Czech)
  31. Jaber L.R. (2018): Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta, 248: 1525-1535. Go to original source... Go to PubMed...
  32. Jaber L.R., Enkerli J. (2016): Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology, 27: 28-41. Go to original source...
  33. Jaber L.R., Ownley B.H. (2018): Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116: 36-45. Go to original source...
  34. James L.C., Bean K.M.R., Grimmer M.K., Barnes S., Kraft T., Stevens M. (2012): Varieties of the future: identification of 'broad spectrum' genetic resistance in sugar beet. International Sugar Journal, 114: 164-168.
  35. Kereši T., Sekulić R.R., Čačić N.J., Forgić G.Đ., Marić V.R. (2006): Control of sugar beet pests at early season by seed treatment with insecticides. Zbornik Matice Srpske za Prirodne Nauke: 195-204. Go to original source...
  36. Kristek A. (2015): Važnost šećerne repe za Republiku Hrvatsku. In: Bažok R. (ed.): Šećerna Repa - Zaštita od Štetnih Organizama u Sustavu Integrirane Biljne Proizvodnje. University of Zagreb Faculty of Agriculture, Zagreb, Croatia: 7-9.
  37. Liu Y., Yang Y., Wang B. (2022): Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Scientific Reports, 12. doi:10.1038/S41598-022-19899-7. Go to original source... Go to PubMed...
  38. Maceljski M. (2002): Poljoprivredna Entomologija; Zrinski, Čakovec, Croatia.
  39. McDonald E., Punja N., Jutsum A.R. (1986): Rationale in the invention and optimisation of tefluthrin, a pyrethroid for use in soil. British Crop Protection Conference - Pests and Diseases, Proceedings: 199-206.
  40. Poggi S., Le Cointe R., Riou J.B., Larroudé P., Thibord J.B., Plantegenest M. (2018): Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. Journal of Pest Science, 91: 585-599. Go to original source...
  41. Pospišil M. (2013): Ratarstvo II. Dio-Industrijsko Bilje; Zrinski, Čakovec, Croatia. (in Croatian)
  42. PRI (2015): Pesticide Research Institute. Flupyradifurone: A new insecticide or just another neonicotinoid? Available at https://www.pesticideresearch.com/site/2015/02/05/flupyradifurone-a-new-insecticide-or-just-another-neonicotinoid/
  43. Reed R.C., Bradford K.J., Khanday I. (2022): Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity, 128: 450-459. Go to original source... Go to PubMed...
  44. Sharma K.K., Singh U.S., Sharma P., Kumar A., Sharma L. (2015): Seed treatments for sustainable agriculture-a review. Journal of Applied and Natural Science, 7: 521-539. Go to original source...
  45. Sur R., Stork A. (2003): Uptake, translocation and metabolism of imidacloprid in plants. Bullentin of Insectology, 56: 35-40.
  46. Tot I. (2008): Osnovni preduvjeti za uspjeh u proizvodnji šećerne repe. Glasnik Zaštite Bilja, 31: 76-80. (in Croatian)
  47. Townsend G.R., Heuberger J.V. (1943): Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report, 27: 340-343.
  48. Vega F.E. (2018): The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia, 110: 4-30. Go to original source... Go to PubMed...
  49. Veres A., Wyckhuys K.A.G., Kiss J., Tóth F., Burgio G., Pons X., Avilla C., Vidal S., et al. (2020): An update of the worldwide integrated assessment (wia) on systemic pesticides. part 4: alternatives in major cropping systems. Environmental Science and Pollution Research, 27: 29867-29899. Go to original source... Go to PubMed...
  50. Viric Gasparic H., Lemic D., Drmic Z., Cacija M., Bazok R. (2021): The efficacy of seed treatments on major sugar beet pests: possible consequences of the recent neonicotinoid ban. Agronomy, 11: 1277. Go to original source...
  51. Virić Gašparić H. (2022): Neonicotionoid degradation dynamics in sugar beet plants grown from treated seeds and influence on harmful and beneficial fauna [PhD thesis]. Zagreb: University of Zagreb, Faculty of Agriculture.
  52. Vojvodić M., Bažok R. (2021): Future of insecticide seed treatment. Sustainability, 13: 8792. Go to original source...
  53. Vuković S., Indžić D., Gvozdenac S., Grahovac M., Marinković B., Kereši T., Tanasković S. (2014): Comparative evaluation of insecticides in control of Bothynoderes punctiventris Germ. under laboratory and field conditions. Romanian Agricultural Research, 31: 348-355.
  54. Zhang C.L., Xu D.C., Jiang X.C., Zhou Y., Cui J., Zhang C.X., Chen D.F., Fowler M.R., et al. (2008): Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Annals of Applied Biology, 152: 143-156. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.