Plant Protect. Sci., 2024, 60(4):393-406 | DOI: 10.17221/61/2024-PPS

Identification, classification, and transcriptional analysis of TCP gene family from Scutellaria baicalensis and SbTCP genes response under MeJA and SA treatmentsOriginal Paper

Changying Dong1, Purong Zhang1, Dan Wang1
1 School of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, P. R. China

TCP transcription factor is a plant-specific gene family which plays important roles in many developmental control pathways, regulating secondary metabolites and plant responses to abiotic and biotic stresses. Nevertheless, this gene family remains unknown in Scutellaria baicalensis. Here, by identifying and analysing all the TCP transcription factor family members based on the transcriptome of S. baicalensis, a total of 19 SbTCP genes were obtained following gene classification, the phylogenetic relationship, conserved domain structure, functional differentiation, and an expression activity analysis. Phylogenetic analysis grouped the SbTCP genes into two subfamilies; we also found that SbTCP with the same motif structure clustered together in the evolutionary tree, and these results suggest that SbTCP proteins with the same gene structure have similar functions. Gene Ontology (GO) categorised the SbTCP genes into 17 functional subcategories, suggesting that they have diversified in functionality, even though their putative proteins share a number of conserved motifs. After the MeJA and SA treatments, the expression of SbTCP candidate genes containing MeJA and SA promoter elements was significantly higher or lower compared with the control, indicating that these candidate SbTCP genes could respond to different concentrations of MeJA and SA treatments. These comprehensive data provide a reference for elucidating the functions of TCP transcription factor family in the growth, development, and MeJA and SA stress response of S. baicalensis, this study can create a new avenue for understanding the role of TCP gene family in S. baicalensis.

Keywords: Scutellaria baicalensis; TCP transcription factor; evolutionary and phylogenetic analysis; gene expression; expression pattern analysis

Received: April 17, 2024; Revised: July 5, 2024; Accepted: July 24, 2024; Prepublished online: September 4, 2024; Published: October 14, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Dong C, Zhang P, Wang D. Identification, classification, and transcriptional analysis of TCP gene family from Scutellaria baicalensis and SbTCP genes response under MeJA and SA treatments. Plant Protect. Sci. 2024;60(4):393-406. doi: 10.17221/61/2024-PPS.
Download citation

References

  1. Aguilar-Martínez J., Poza-Carrión C., Cubas P. (2007): Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 19: 458-472. Go to original source... Go to PubMed...
  2. Aguilar-Martínez J., Sinha N. (2013): Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Frontiers in Plant Science, 16: 406. Go to original source... Go to PubMed...
  3. Braun N., De S., Pillot J., Boutet-Mercey S., Dalmais M., Antoniadi I., Li X., Maia-Grondard A., et al. (2012): The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiology, 158: 225-238. Go to original source... Go to PubMed...
  4. Chanchal D., Singh K., Bhushan B., Chaudhary J., Kumar S., Varma A., Agnihotri N., Garg A. (2023): An updated review of Chinese skullcap (Scutellaria baicalensis): Emphasis on phytochemical constituents and pharmacological attributes. Pharmacological Research - Modern Chinese Medicine, 9: 100326. Go to original source...
  5. Chen C., Chen H., Zhang Y., Thomas H., Frank M., He Y., Xia R. (2020): TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13: 1194-1202. Go to original source... Go to PubMed...
  6. Chen Y., Hui H., Yang H., Zhao K., Qin Y., Gu C., Wang X., Lu N., et al. (2013): Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localisation of PLSCR1 in AML cells. Blood, 121: 3682-3691. Go to original source... Go to PubMed...
  7. Conesa A., Gotz S., Garcia-Gomez J., Terol J., Talon M., Robles M. (2005): Blast2go: a universal tool for annotation, visualisation and analysis in functional genomics research. Bioinformatics, 21: 3674-3676. Go to original source... Go to PubMed...
  8. Cubas P., Lauter N., Doebley J. (1999): The TCP domain: a motif found in proteins regulating plant growth and development. Plant Journal, 18: 215-222. Go to original source... Go to PubMed...
  9. Danisman S., Dijk A., Bimbo A., Wal F., Hennig L., Folter S., Angenent G., Immink R. (2013): Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany, 64: 5673-5685. Go to original source... Go to PubMed...
  10. Ding S., Cai Z., Du H., Wang H. (2019): Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular Sciences, 20: 2762. Go to original source... Go to PubMed...
  11. Doebley J., Stec A., Gustus C. (1995): Teosinte branched 1 and the origin of maise: evidence for epistasis and the evolution of dominance. Genetics, 141: 333-346. Go to original source... Go to PubMed...
  12. Efroni I., Blum E., Goldshmidt A., Eshed Y. (2008): A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell, 20: 2293-2306. Go to original source... Go to PubMed...
  13. Finn R., Clements J., Eddy S. (2011): HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 39: W29-W37. Go to original source... Go to PubMed...
  14. Finn R., Coggill P., Eberhardt R., Eddy S., Mistry J., Mitchell A., Potter S., Punta M., et al. (2016): The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44: D279-D285 Go to original source... Go to PubMed...
  15. Fox J., Sakamuru S., Huang R., Teneva N., Simmons S., Xia M., Tice R., Austin C., et al. (2012): High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proceedings of the National Academy of Sciences, 109: 5423-5428. Go to original source... Go to PubMed...
  16. Hayat Q., Hayat S., Irfan M., Ahmad A. (2010): Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68: 14-25. Go to original source...
  17. He Z., Zhou X., Chen J., Yin L., Zeng Z., Xiang J., Liu S. (2021): Identification of a consensus DNA-binding site for the TCP domain transcription factor TCP2 and its important roles in the growth and development of Arabidopsis. Molecular Biology Reports, 48: 2223-2233. Go to original source... Go to PubMed...
  18. Hu J., Liu T., Huo H., Liu S., Liu M., Liu C., Zhao M., Wang K., et al. (2023): Genome-wide characterisation, evolutionary analysis, and expression pattern analysis of the trihelix transcription factor family and gene expression analysis under MeJA treatment in Panax ginseng. BMC Plant Biology, 23: 376. Go to original source... Go to PubMed...
  19. Huang Y., Zhao X., Zheng Q., He X., Zhang M., Ke S., Li Y., Zhang C., et al. (2023): Genome-wide identification of TCP gene family in dendrobium and their expression patterns in Dendrobium chrysotoxum. International Journal of Molecular Sciences, 24: 14320. Go to original source... Go to PubMed...
  20. Kieffer M., Master V., Waites R., Davies B. (2011): TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant Journal, 68: 147-158. Go to original source... Go to PubMed...
  21. Koyama T., Mitsuda N., Seki M., Shinozaki K., Ohme-Takagi M. (2010): TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell, 22: 3574. Go to original source... Go to PubMed...
  22. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018): MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547-1549. Go to original source... Go to PubMed...
  23. Li C., Potuschak T., Colón-Carmona A., Gutiérrez R., Doerner P. (2005): Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proceedings of the National Academy of Sciences, 102: 12978-12983. Go to original source... Go to PubMed...
  24. Li D., Tang X., Dong Y., Wang Y., Shi S., Li S., Liu Y., Ge H., et al. (2022a): Comparative genomic investigation of TCP gene family in eggplant (Solanum melongena L.) and expression analysis under divergent treatments. Plant Cell Reports, 41: 2213-2228. Go to original source... Go to PubMed...
  25. Li W., Li D., Han L., Tao M., Hu Q., Wu W., Zhang J., Li X., et al. (2017): Genome-wide identification and characterisation of TCP transcription factor genes in upland cotton (Gossypium hirsutum). Scientific Reports, 7: 10118. Go to original source... Go to PubMed...
  26. Li Y., Lin Y., Jia B., Chen G., Shi H., Xu R., Li X., Tang J., et al. (2022b): Transcriptome analysis reveals molecular mechanisms underlying methyl jasmonate-mediated biosynthesis of protopanaxadiol-type saponins in Panax notoginseng leaves. Journal of Plant Biology, 65: 29-41. Go to original source...
  27. Li Z., Peng R., Yao Q. (2021): SlMYB14 promotes flavonoids accumulation and confers higher tolerance to 2,4,6-trichlorophenol in tomato. Plant Science, 303: 110796. Go to original source... Go to PubMed...
  28. Liu C., Lv T., Shen Y., Liu T., Liu M., Hu J., Liu S., Jiang Y., et al. (2024): Genome-wide identification and integrated analysis of TCP genes controlling ginsenoside biosynthesis in Panax ginseng. BMC Plant Biology, 24: 47. Go to original source... Go to PubMed...
  29. Liu D., Zhang C., Zhao X., Ke S., Li Y., Zhang D., Zheng Q., Li M., et al. (2022a): Genome-wide analysis of the TCP gene family and their expression pattern in Cymbidium goeringii. Frontiers in Plant Science, 13: 1068969. Go to original source... Go to PubMed...
  30. Liu S., Yin X., Feng T., Kang Z., Zhang X., Dong J., Liang Z. (2022b): Genome-wide identification and expression analysis of the TCP genes in Senna tora reveal the regulatory mechanism of their response to MeJA. Industrial Crops and Products, 187: 115511. Go to original source...
  31. Lucero L., Uberti-Manassero N., Arce A., Colombatti F., Alemano S., Gonzalez D. (2015): TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. Plant Journal, 84: 267-282. Go to original source... Go to PubMed...
  32. Luo D., Carpenter R., Vincent C., Copsey L., Coen E. (1996): Origin of floral asymmetry in Antirrhinum. Nature, 383: 794-799. Go to original source... Go to PubMed...
  33. Martin-Trillo M., Cubas P. (2010): TCP genes: a family snapshot ten years later. Trends in Plant Science, 15: 31-39. Go to original source... Go to PubMed...
  34. Navaud O., Dabos P., Carnus E., Tremousaygue D., Hervé C. (2007): TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution, 65: 23-33. Go to original source... Go to PubMed...
  35. Oebley J., Stec A., Hubbard L. (1997): The evolution of apical dominance in maise. Nature, 386: 485-488. Go to original source... Go to PubMed...
  36. Ori N., Cohen A., Etzioni A., Brand A., Yanai O., Shleizer S., Menda N., Amsellem Z., et al. (2007): Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 39: 787-791. Go to original source... Go to PubMed...
  37. Parapunova V., Busscher M., Busscher-Lange J., Lammers M., Karlova R., Bovy A., Angenent G., Maagd R. (2014): Identification, cloning and characterisation of the tomato TCP transcription factor family. BMC Plant Biology, 14: 157. Go to original source... Go to PubMed...
  38. Sarvepalli K., Nath U. (2011): Interaction of TCP4-mediated growth module with phytohormones. Plant Signaling & Behavior, 6: 1440-1443. Go to original source... Go to PubMed...
  39. Shen J., Zhang Y., Ge D., Wang Z., Song W., Gu R., Che G., Cheng Z., et al. (2019): CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proceedings of the National Academy of Sciences, 116: 17105-17114. Go to original source... Go to PubMed...
  40. Subramanian B., Gao S., Lercher M., Hu S, Chen W. (2019): Evolview v3: a webserver for visualisation, annotation, and management of phylogenetic trees. Nucleic Acids Research, 47: 270-275 Go to original source... Go to PubMed...
  41. Tan Y., Lin F., Ding Y., Dai S., Liang Y., Zhang Y., Li J., Chen H. (2022): Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomedicine, 107: 154458. Go to original source... Go to PubMed...
  42. Viola I., Uberti M., Ripoll R., Gonzalez D. (2011): The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochemical Journal, 435: 143-155. Go to original source... Go to PubMed...
  43. Wang X., Gao J., Zhu Z., Dong X., Wang X., Ren G., Zhou X., Kuai B. (2015): TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. Plant Journal, 82: 151-162. Go to original source... Go to PubMed...
  44. Wang Y., Zhang N., Li T., Yang J., Zhu X., Fang C., Li S., Si H. (2019): Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). Computational Biology and Chemistry, 78: 53-63. Go to original source... Go to PubMed...
  45. Xu Z., Gao R., Pu X., Xu R., Wang J., Zheng S., Zeng Y., Chen J., et al. (2020): Comparative genome analysis of Scutellaria baicalensis and Scutellaria barbata reveals the evolution of active flavonoid biosynthesis. Genomics Proteomics Bioinformatics, 18: 230-240. Go to original source... Go to PubMed...
  46. Yang M., Chiang Y., Higashiyama R., Asahina K., Mann D., Mann J., Wang C., Tsukamoto H. (2012): Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor γ in hepatic stellate cells for their antifibrotic effect. Hepatology, 55: 1271-1281. Go to original source... Go to PubMed...
  47. Yao X., Ma H., Wang J., Zhang D. (2007): Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology, 49: 885-897. Go to original source...
  48. Zaheer M., Giri C. (2016): Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata. Research on Chemical Intermediates, 43: 1-12. Go to original source...
  49. Zhang D., Wu J., Ye F., Xue L., Jiang S., Yi J., Zhang W., Wei H., et al. (2003): Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis. Cancer Research, 63: 4037-4043.
  50. Zhao Q., Chen X., Martin C. (2016): Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Science Bulletin, 61: 1391-1398. Go to original source... Go to PubMed...
  51. Zhao T., Tang H., Xie L., Zheng Y., Ma Z., Sun Q., Li X. (2019): Scutellaria baicalensis georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology, 71: 1353-1369. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.