Plant Protect. Sci., 2004, 40(3):87-93 | DOI: 10.17221/1471-PPS

Powdery mildew resistance in some Aegilops species

Miroslav ©vec, Marta Miklovičová, Valéria ©udyová, Martina Hudcovicová, Pavol Hauptvogel, Ján Kraic
1 Department of Genetics, Comenius University, Bratislava, Slovak Republic
2 Research Institute of Plant Production, Pieą»any, Slovak Republic

Resistance to powdery mildew (Blumeria graminis (DC.) E. O. Speer f.sp. tritici Em. Marchal) in Aegilops crassa Boiss., Ae. ventricosa Tausch, Ae. biuncialis Vis., Ae. triuncialis L. and Ae. cylindrica Host was tested at the stage of primary leaves in the years 2000 and 2001. All plants of Ae. ventricosa, Ae. biuncialis and sample No. 9 of Ae. cylindrica repeatedly showed a susceptible reaction after being inoculated by all powdery mildew isolates used. In contrast, plants of Ae. crassa, sample No. 8 of Ae. cylindrica and all samples (No. 13, 21, 22, 24 and 26) of Ae. triuncialis were resistant to all isolates. Samples No. 5, 6, 7, 19 and 23 of Ae. cylindrica contained resistant and susceptible plants in both years. Virulence to these samples ranged from 3% to 18%. Cluster analysis using DNA microsatellite markers showed that the accessions are arranged in groups based on taxonomic relationship but not on basis of resistance. Plants susceptible to powdery mildew at the juvenile stage showed satisfactory adult plant resistance.

Keywords: Blumeria graminis DC f.sp. tritici; Aegilops spp.; disease resistance; virulence analysis; DNA polymorphism; genetic resources

Published: September 30, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
©vec M, Miklovičová M, ©udyová V, Hudcovicová M, Hauptvogel P, Kraic J. Powdery mildew resistance in some Aegilops species. Plant Protect. Sci. 2004;40(3):87-93. doi: 10.17221/1471-PPS.
Download citation

References

  1. A M., B D H.S. (2001): A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breeding, 120: 259-261. Go to original source...
  2. A S., F H. (1998): Resistance in Aegilops species against leaf rust, stem rust, Septoria tritici blotch, eyespot and powdery mildew of wheat. Z. Pflanzenkr. Pflanzensch., 105: 624-631.
  3. B H.S., M I R.A. (1994): Characterization and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica, 76: 53-61. Go to original source...
  4. D S.L., W J., H J.B. (1993): A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep., 4: 19-21.
  5. G R., B D., F F. (2001): Specific genetic markers for wheat, spelt, and four wild relatives - comparison of isozymes, RAPDs, and wheat microsatellites. Genome, 44: 610-621. Go to original source... Go to PubMed...
  6. G M., C Y.S., R -S J., O J.L. (1994): Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet., 89: 998-1006. Go to original source... Go to PubMed...
  7. I N., K A., K K., K T., B T. (2001): Screening relatives of wheat for snow mold resistance and freezing tolerance. Euphytica, 122: 335-341. Go to original source...
  8. J J., A P., T A.M., D F., R R., K S., B H.S. (2001): The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar "VPM1" carries the cereal cyst nematode resistance gene Cre5. Plant Breeding, 120: 125-128. Go to original source...
  9. J A.J., W V., T S.L. (1985): Hypervariable "minisatellite" regions in human DNA. Nature, 314: 67-73. Go to original source... Go to PubMed...
  10. L E., F F.G., A D. (1987): Analysis of virulence in populations of wheat powdery mildew in Europe. J. Phytopathol., 120: 1-8. Go to original source...
  11. L J., H S.L.K., L E., Z F.J. (1995): Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). Genes Pm2 and Pm19 from Aegilops squarosa L. Heredity, 74: 152-156. Go to original source...
  12. M M.J., H B.A., G F.J., O'H N. (1988): Probing the human genome with minisatellite-like sequences from the human coagulation factor-VII gene. Nucleic Acids Res., 16: 4166. Go to original source... Go to PubMed...
  13. N Y., L M., O'C P., W R., H T., C M., M C., F E., H M., K E., W R. (1987): Variable number of tandem repeat (VNTR) markers for human gene mapping. Science, 235: 1616-1622. Go to original source... Go to PubMed...
  14. N J.C., S M.E., V D A.E., Y H L, A M., B M., L P., F J.D., A J.A. (1995): Molecular mapping of wheat major genes and rearrangements in homeologous groups 4, 5 and 7. Genetics, 141: 721-726. Go to original source... Go to PubMed...
  15. V G., G M., M M., B H., L A.-S., C D. (1987): A sequence of M13 phage detect hypervariable minisatellites in human and animal DNA. Science, 235: 683-684. Go to original source... Go to PubMed...
  16. V G. (1989): Polymers of random short oligonucleotides detect polymorphic loci in the human genome. Nucleic Acids Res., 17: 7623-7630. Go to original source... Go to PubMed...
  17. W B.C., Z Z., D J.F., M C.L., G J.P. (1993): Characterization of minisatellite sequences from Oryza sativa. Genome, 36: 978-983. Go to original source... Go to PubMed...
  18. W A.J., L C.N., H T.W., K R.M.D., G A. (1988): Location of a gene for resistance to eyespot (Pseudocercosporella herpotrichoides) on chromosome 7D of bread wheat. Plant Breeding, 101: 43-51. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.