Plant Protect. Sci., 2015, 51(1):46-51 | DOI: 10.17221/93/2013-PPS
Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica Original Paper
- Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Two Bacillus thuringiensis strains including ToIr65 and ToIr67 with nematicidal activity against hatched juveniles and eggs of Meloidogyne javanica were identified by phenotypic, microscopic, 16s rDNA sequencing and nematode cry gene specific PCR. Two forms of bacterial isolates including bacterial suspension (BS) and spore/crystal mixture (SCM) were tested in lab and pot conditions to evaluate their efficacy in M. javanica management. The BS of ToIr65 and ToIr67 showed 70% nematicidal activity in comparison to SCM in vitro. In pot experiments, two forms of ToIr65 significantly (by 51%) decreased number of gall over infested control and also increased growth parameters on tomato plants, but ToIr67 did not. Our results suggested that Bt-ToIr65 could be employed as a biocontrol agent for the management of M. javanica.
Keywords: : cry toxins; Iran; nematicidal; nematode management; tomato
Published: March 31, 2015 Show citation
References
- Barker K.R. (1985): Nematode extractions and bioassays. In: Barker K.R., Carter C.C., Sasser J.N. (eds): An Advanced Treatise on Meloidogyne Methodology. Vol. II. Raleigh, North Carolina State University Graphics: 19-35.
- Bravo A., Gómez I., Porta H., García-Gómez B.I., Rodriguez-Almazan C., Pardo L., Soberón M. (2012): Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnology, 6: 17-26.
Go to original source...
Go to PubMed...
- Carneiro R.M., De Souza I.S., Belarmino L.C. (1998): Nematicidal activity of Bacillus spp. strains on juveniles of Meloidogyne javanica. Nematology Mediterranean, 22: 12-21.
- Crickmore N. (2005): Using worms to better understand how Bacillus thuringiensis kills insects. Trends in Microbiology, 13: 347-350.
Go to original source...
Go to PubMed...
- Crickmore N., Zeigler D.R., Schnepf E., Van Rie J., Lereclus D., Baum J., Bravo A., Dean D.H. (2011): Bacillus thuringiensis toxin nomenclature. Available at http://www. lifesci. sussex.ac.uk/Home/Neil_Crickmore/Bt/
- Deviddas P., Rehberger L.A. (1992): The effects of exotoxin (Thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant and Soil, 145: 115-120.
Go to original source...
- Ejiofor A.O., Johnson T. (2002): Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. Journal of Industrial Microbiology and Biotechnology, 28: 284-290.
Go to original source...
Go to PubMed...
- Hussey R.S., Barker K.R. (1973): A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Report, 57: 1025-1028.
- Lecadet M.M., Dedonder R. (1971): Biogenesis of the crystalline inclusion of Bacillus thuringiensis during sporulation. European Journal of Biochemistry, 23: 282-294.
Go to original source...
Go to PubMed...
- Leyns F., Borgoni G., Arnaut G., De Waele D. (1995): Nematicidal activity of Bacillus thuringiensis isolates. Fundamental Applied Nematology, 18: 211-218.
- Logan N.A., De Vos P. (2006): Genus I. Bacillus Cohn 1872, 174 AL. In: De Vos P., Garrity G., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., Whitman W. (eds): Bergey's Manual of Systematic Bacteriology. Vol. 3: The Firmicutes. 2nd Ed. Dordrecht, Springer: 21-128. doi: 10.17221/93/2013-PPS
Go to original source...
- Mahdikhani-Moghaddam E., Kheyri A., Mohammadi M., Eshtiyaghi H., Okhovat M. (2003): Introduction of three new species of Meloidogyne genus for Iran. Journal of Plant Pathology, 39: 189-211.
- Mohammed S.H., Anwer El Saedy M., Enan M.R., Ibrahim N.I., Ghareeb A., Moustafa S.A. (2008): Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. Journal of Cellular and Molecular Biology, 7: 57-66.
- Noling J.W., Becker J.O. (1994): The challenge of research and extension to define and implement alternatives to methyl bromide. Journal of Nematology, 26: 573-586.
Go to PubMed...
- Ongena M., Jacques Ph. (2007): Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16: 115-125.
Go to original source...
Go to PubMed...
- Peng D., Chai L., Wang F., Zhang F., Ruan L., Sun M. (2011): Synergistic activity between Bacillus thuringiensis Cry6Aa and Cry55Aa toxins against Meloidogyne incognita. Microbial Biotechnology, 4: 794-798.
Go to original source...
Go to PubMed...
- Raddadi N., Cherif A., Ouzari H., Marzorati M., Brusetti L., Boudabous A., Daffonchio D. (2007): Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Annual Microbiology, 57: 481-494.
Go to original source...
- Ramezani Moghaddam M., Mahdikhani Moghaddam E., Baghaee Ravari S., Rouhani H. (2013): The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol Science and Technology, 24: 279-290.
Go to original source...
- Sadeghi Z., Mahdikhani Moghadam E., Azizi M. (2012): Evalution of plant products to control Meloidogyne javanica on tomato. Iranian Journal of Plant Pathology, 48: 155-163.
- Salehi Jouzani Gh., Seifinejad A., Saeedizadeh A., Nazarian A., Yousefloo M., Soheilivand S., Mousivand M., Jahangiri R., Yazdani M., Maali Amiri R., Akbari S. (2008): Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Canadian Journal of Microbiology, 54: 812-822.
Go to original source...
Go to PubMed...
- Schnepf H., Lee S., Dojillo J., Burmeister P., Fencil K., Morera L., Nygaard L., Narva K., Wolt D. (2005): Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections. Applied and Environmental Microbiology, 71: 1765-1774.
Go to original source...
Go to PubMed...
- Sharma R.D. (1994): Bacillus thuringiensis a biocontrol agent of Meloidogyne incognita on barley. Nematologia Brasileira, 18: 79-84.
- Shokoohi E., Kheiri A., Etebarian H.R., Roostaei A. (2004): Interactions between root-knot nematode Meloidogyne javanica and Fusarium wilt disease, Fusarium oxysporum f.sp. melonis in different varieties of melon. Communication in Agriculture and Applied Biological Sciences, 69: 387-391.
- Sikora R.A., Fernandez E. (2005): Nematode parasites of vegetables. In: Luc M., Sikora R.A., Bridge J. (eds): PlantParasitic Nematodes in Subtropical and Tropical Agriculture. Wallingford, CABI Publishing: 319-392.
Go to original source...
- Tavakol-Norabadi M., Sahebani N., Etebarian H.R. (2013): Biological control of root-knot nematode (Meloidogyne javanica) disease by Pseudomonas fluorescens (ChAO). Archive of Phytopathology and Plant Protection, 47: 615-621.
Go to original source...
- Wei J., Hale K., Carta L., Platzer E., Wong C., Fang S., Aroian V. (2003): Bacillus thurigiensis crystal proteins that target nematode. Microbiology, 100: 2760-2765.
Go to original source...
Go to PubMed...
- Welington L.A., Derlene A.A., Joao L.A. (2004): Direct RAPD evaluation of bacteria without conventional DNA extraction. Brazilian Archive of Biology and Technology, 47: 375-380.
Go to original source...
- Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. (1991): 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697-703.
Go to original source...
Go to PubMed...
- Zhang F., Peng D., Ye P., Yu Z., Hu Z., Ruan L., Sun M. (2012): In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla. PLoS One, 7: e38534. doi: 10.1371/journal.pone.0038534.
Go to original source...
Go to PubMed...
- Zuckerman B.M., Dicklow M.B., Acosta N. (1993): A strain of Bacillus thuringiensis for the control of plant parasitic nematodes. Biocontrol Science and Technology, 3: 41-46.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.