Plant Protect. Sci., 2017, 53(2):61-70 | DOI: 10.17221/182/2015-PPS

Fusarium-plant interaction: state of the art - a reviewReview

María I. Dinolfo*,1,2, Eliana Castañares1,2, Sebastián A. Stenglein1,2,3
1 Laboratory of Functional Biology and Biotechnology (BIOLAB)-INBIOTEC
3 and Department of Microbiology, Faculty of Agronomy, National University of the Center of the Buenos Aires Province, Azul, Buenos Aires, Argentina
2 National Scientific and Technical Research Council (CONICET), Caba, Argentina$3

One of the most important genera able to develop diseases in cereals is Fusarium which not only produces losses by the fungal presence but also mycotoxin production harmful to human and animal consumers. In the environment, plants are continuously threatened by abiotic and biotic stresses. Among the latter, pathogens gained importance mainly due to their ability to affect the plant fitness. To protect against potential attacks, plants have developed strategies in which phytohormones have an essential role. In plant-pathogen interactions, salicylic acid, ethylene, and jasmonates are the most important, but there are also auxins, gibberellins, abscisic acid, cytokinins, brassinosteroids, and peptide hormones involved in plant defence. The interaction between Fusarium species and plants used as models has been developed to allow understanding the plant behaviour against this kind of pathogen with the aim to develop several strategies to decrease the Fusarium disease effects.

Keywords: phytohormones; signalling pathways

Published: June 30, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Dinolfo MI, Castañares E, Stenglein SA. Fusarium-plant interaction: state of the art - a review. Plant Protect. Sci. 2017;53(2):61-70. doi: 10.17221/182/2015-PPS.
Download citation

References

  1. Achard P., Renou J-P., Berthomé R., Harberd N.P., Genschik P. (2008): Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology, 18: 656-660. Go to original source... Go to PubMed...
  2. Adie B.A.T., Pérez-Pérez J., Pérez-Pérez M.M., Godoy M., Sánchez-Serrano J.J., Schmelz E.A., Solano R. (2007): ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell, 19: 1665-1681. Go to original source... Go to PubMed...
  3. Ali S., Rivera V.V., Secor G.A. (2005): First report of Fusarium graminearum causing dry rot of potato in North Dakota. Plant Disease, 89: 105. Go to original source... Go to PubMed...
  4. Alvarez M.E. (2000): Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44: 429-442. Go to original source... Go to PubMed...
  5. Arie T., Takahashi H., Kodama M., Teraoka T. (2007): Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology, 24: 135-147. Go to original source...
  6. Asano T., Kimura M., Nishiuchi T. (2012): The defense response in Arabidopsis thaliana against Fusarium sporotrichioides. Proteome Science, 10: 61. Go to original source... Go to PubMed...
  7. Asselbergh B., De Vleesschauwer D., Höfte M. (2008): Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant Pathology Interactions, 21: 709-719. Go to original source... Go to PubMed...
  8. Baldwin I.T. (2001): An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiology, 127: 1449-1458. Go to original source...
  9. Bari R., Jones J.D.G. (2009): Role of plant hormones in plant defense responses. Plant Molecular Biology, 69: 473-488. Go to original source... Go to PubMed...
  10. Berrocal-Lobo M., Molina A. (2004): Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Molecular Plant Microbe Interactions, 17: 763-770. Go to original source... Go to PubMed...
  11. Bleecker A.B., Schaller G.E. (1996): The mechanism of ethylene perception. Plant Physiology, 111: 653-660. Go to original source... Go to PubMed...
  12. Blümke A., Sode B., Ellinger D., Voigt C.A. (2015): Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol. Molecular Plant Pathology, 16: 472-483. Go to original source... Go to PubMed...
  13. Bombarely A., Rosli H.G., Vrebalov J., Moffett P., Mueller L.A., Martin G.B. (2012): A draft genome sequence of Nicotiana benthamiana to enhance molecular plantmicrobe biology research. Molecular Plant Microbe Interactions, 25: 1523-1530. Go to original source... Go to PubMed...
  14. Bostock R.M., Pye M.F., Roubtsova T.V. (2014): Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annual Reviews of Phytopathology, 52: 23.1-23.33. Go to original source... Go to PubMed...
  15. Broekaert W.F., Delauré S.L., De Bolle M.F.C., Cammue B.P.A. (2006): The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology, 44: 393-416. Go to original source... Go to PubMed...
  16. Cakir B., Gül A., Yolageldi L., Özaktan H. (2014): Response to Fusarium oxysporum f.sp. radices-lycopersici in tomato roots involves regulation of SA- and ET-responsive gene expressions. European Journal of Plant Pathology, 139: 379-391. Go to original source...
  17. Chen X., Steed A., Harden C., Nicholson P. (2006): Characterization of Arabidopsis thaliana-Fusarium graminearum interactions and identification of variation in resistance among ecotypes. Molecular Plant Pathology, 7: 391-403. Go to original source... Go to PubMed...
  18. Chen Z., Agnew J.L., Cohen J.D., He P., Shan L., Sheen J., Kunkel B.N. (2007): Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proceedings of the National Academy of Sciences of the United States, 104: 20131-20136. Go to original source... Go to PubMed...
  19. Chen X., Steed A., Travella S., Keller B., Nicholson P. (2009): Fusarium graminearum exploits ethylene signaling to colonize dicotyledonous and monocotyledonous plants. New Phytologist, 182: 975-983. Go to original source... Go to PubMed...
  20. Chochois V., Vogel J.P., Watt M. (2012): Application of Brachypodium to the genetic improvement of wheat roots. Journal of Experimental Botany, 63: 3467-3474. Go to original source... Go to PubMed...
  21. Choi J., Choi D., Lee S., Ryu Ch-M., Hwang I. (2011): Cytokinins and plant immunity: old foes or new friends? Trends in Plant Science, 18: 388-394. Go to original source... Go to PubMed...
  22. Dangl J.L. (1993): Application of Arabidopsis thaliana to outstanding issues in plant-pathogen interactions. International Review of Cytology, 144: 53-83. Go to original source...
  23. De Galich M.T.V. (1997): Fusarium head blight in Argentina. In: Dubin H.J., Gilchrist L, McNab A.P.M. (eds): Fusarium Head Scab: Global Status and Future Prospects. Mexico, CIMMYT: 19-28.
  24. Desjardins A.E. (2006): Fusarium Mycotoxins. Chemistry, Genetics, and Biology. St. Paul, APS Press.
  25. Desmond O.J., Manners J.M., Stephens A.E., Maclean D.J., Schenk P.M., Gardiner D.M., Munn A.L., Kazan K. (2008): The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Molecular Plant Pathology, 9: 435-445. Go to original source... Go to PubMed...
  26. De Vos M., Van Oesten V.R., Van Poecke R.M.P., Van Pelt J.A., Pozo M.J., Mueller M.J., Buchala A.J., Métraux J-P., Van Loon L.C., Dicke M., Pieterse C.M.J. (2005): Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant Microbe Interactions, 18: 923-937. Go to original source... Go to PubMed...
  27. Diamond M., Reape T.J., Rocha O., Doyle S.M., Kacprzyk J., Doohan F.M., McCabe P.F. (2013): The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLOS ONE, 8: e69542. doi: 10.1371/journal.pone.0069542 Go to original source... Go to PubMed...
  28. Díaz de Ackermann M., Kohli M.M. (1997): Research on Fusarium head blight of wheat in Uruguay. In: Dubin H.J., Gilchrist L, McNab A.P.M. (eds): Fusarium Head Scab: Global Status and Future Prospects. Mexico, CIMMYT: 13-18..
  29. Dill-Macky R. (1997): Fusarium head blight: recent epidemics and research efforts in the upper Midwest of United States. In: Dubin H.J., Gilchrist L., Reeves J., McNab A. (eds): Fusarium Head Scab: Global Status and Future Prospects. Mexico, CIMMYT.
  30. Draper J., Mur L.A.J., Jenkins G., Ghosh-Biswas G.C., Bablak P., Hasterok R., Routledge A.P.M. (2001): Brachypodium distachyon. a new model system for functional genomics in grasses. Plant Physiology, 127: 1539-1555. Go to original source...
  31. Durrant W.E., Dong X. (2004): Systemic acquired resistance. Annual Review of Phytopathology, 42: 185-209. Go to original source... Go to PubMed...
  32. Ferrari S., Plotnikova J.M., De Lorenzo G., Ausubel F.M. (2003): Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal, 35: 193-205. Go to original source... Go to PubMed...
  33. Ganapathi T.R., Suprasanna P., Rao P.S., Bapt V.A. (2004): Tobacco (Nicotiana tabacum L.) - a model system for tissue cultive interventions and genetic engineering. Indian Journal of Biotechnology, 3: 171-184.
  34. Gao C-S., Kou X-J., Li H-P., Zhang J-B., Saad A.S.I., Liao Y-C. (2012): Inverse effects of Arabidopsis NPR1 gene on fusarium seedling blight and fusarium head blight in transgenic wheat. Plant Pathology, 62: 383-392. Go to original source...
  35. Gilbert J.R.L., Fernando W.G.D. (2004): Epidemiology and biological control of Gibberella zeae/Fusarium graminearum. Canadian Journal of Plant Pathology, 26: 464-472. Go to original source...
  36. Glazebrook J. (2005): Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43: 205-227. Go to original source... Go to PubMed...
  37. Goddard R., Peraldi A., Ridout C., Nicholson P. (2014): Enhanced disease resistance caused by BRI1 mutation is conserved between Brachypodium distachyon and barley (Hordeum vulgare). Molecular Plant Microbe Interactions, 27: 1095-1106. Go to original source... Go to PubMed...
  38. Goddin M.M., Zaitlin D., Naidu R.A., Lommel S.A. (2008): Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Molecular Plant Pathogen Interactions, 21: 1015-1026. Go to original source... Go to PubMed...
  39. Grant M., Lamb Ch. (2006): Systemic immunity. Current Opinion in Plant Biology, 9: 414-420. Go to original source... Go to PubMed...
  40. Groβkinsky D.K., van der Graaff E., Roitsh T. (2014): Abscisic acid-cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology, 104: 1283-1288. Go to original source... Go to PubMed...
  41. Hazel C.M., Patel S. (2004): Influence of processing on trichothecene levels. Toxicology Letters, 153: 51-59. Go to original source... Go to PubMed...
  42. Kunkel B.N. (1996): A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends in Genetic, 12: 62-69. Go to original source... Go to PubMed...
  43. Kunkel B.N., Brooks D.M. (2002): Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5: 325-331. doi: 10.17221/182/2015-PPS Go to original source... Go to PubMed...
  44. Laurence M.H., Burgess L.W., Summerell B.A., Liew E.C.Y. (2012): High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia. Fungal Biology, 116: 289-297. Go to original source... Go to PubMed...
  45. Leslie J.F., Summerell B.A. (2006): The Fusarium Laboratory Manual. Ames, Blackwell Publishing. Go to original source...
  46. Liu J., Wang X-J. (2006): An integrative analysis of the effects of auxin on jasmonic acid biosynthesis in Arabidopsis thaliana. Journal of Integrative Plant Biology, 48: 99-103. Go to original source...
  47. Lozano-Durán R., Zipfel C. (2015): Trade-off between growth and immunity: role of brassinosteroids. Trends in Plant Science, 20: 12-19. Go to original source... Go to PubMed...
  48. Luu V.T., Schuck S., Kim S.-G., Weinhold A., Baldwin I.T. (2015): Jasmonic acid signalling mediates resistance of the wild tobacco Nicotiana attenuata to its native Fusarium, but no Alternaria, fungal pathogens. Plant, Cell and Environment, 38: 572-584. Go to original source... Go to PubMed...
  49. Makandar R., Nalam V., Chaturvedi R., Jeannotte R., Sparks A.A., Shah J. (2010): Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Molecular Plant Microbe Interactions, 23: 861-870. Go to original source... Go to PubMed...
  50. Makandar R., Nalam V.J., Lee H., Trick H.N., Dong Y., Shah J. (2012): Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Molecular Plant Microbe Interactions, 25: 431-439. Go to original source... Go to PubMed...
  51. Mauch-Mani B., Mauch F. (2005): The role of abscisic acid in plant-pathogen interactions. Current Opinion in Plant Biology, 8: 409-414. Go to original source... Go to PubMed...
  52. Mazzilli S., Pérez C., Ernst O. (2007): Fusariosis de la espiga en trigo: características de la enfermedad y posibilidades de uso de modelos de predicción para optimizar el control químico. Agrociencia, 11: 11-21. Go to original source...
  53. McMullen M., Jones R., Gallenberg D. (1997): Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 81: 1340-1348. Go to original source... Go to PubMed...
  54. Menkir A., Ejeta G., Butler L.G., Melakeberhan A., Warren W.H. (1996): Fungal invasion of kernels and grain mold damage assessment in diverse sorghum germplasm. Plant Disease, 80: 1399-1402. Go to original source...
  55. Navarro L., Bari R., Achard P., Lisón P., Nemri A., Harberd N.P., Jones J.D.G. (2008): DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Current Biology, 18: 650-655. Go to original source... Go to PubMed...
  56. Nicholson P., Chandler E., Draeger R.C., Gosman N.E., Simpson D.R., Thomsett M., Wilson A.H. (2003): Molecular tools to study epidemiology and toxicology of Fusarium head blight of cereals. European Journal of Plant Pathology, 109: 691-703. Go to original source...
  57. Nishiuchi T., Masuda D., Nakashita H., Ichimura K., Shinozaki K., Yoshida S., Kimura M., Yamaguchi I., Yamaguchi K. (2006): Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Molecular Plant Microbe Interactions, 19: 512-520. Go to original source... Go to PubMed...
  58. Nyvall R.F., Percich J.A., Mirocha C.J. (1999): Fusarium head blight of cultivated and natural wild rice (Zizania palustris) in Minnesota caused by Fusarium graminearum and associated Fusarium spp. Plant Disease, 83: 159-164. Go to original source... Go to PubMed...
  59. Pantelides I.S., Tjamos S.E., Pappa S., Kargakis M., Paplomatas E.J. (2013): The ethylene receptor ETR1 is required for Fusarium oxysporum pathogenicity. Plant Pathology, 62: 1302-1309. Go to original source...
  60. Pasquet J.-C., Chaouch S., Macadré C., Balzergue S., Huguet S., Martin-Magniette M.-L., Bellvert F., Deguercy X., Thareau V., Heintz D., Saindrenan P., Dufresne M. (2014): Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genomics, 15: 629. Go to original source... Go to PubMed...
  61. Peraldi A., Beccari G., Steed A., Nicholson P. (2011): Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biology, 11: 100. Go to original source... Go to PubMed...
  62. Peraldi A., Griffe L.L., Burt C., McGrann G.R.D., Nicholson P. (2014): Brachypodium distachyon exhibits compatible interactions with Oculimacula spp. and Ramularia collocygni, providing the first pathosystem model to study eyespot and ramularia leaf spot diseases. Plant Pathology, 63: 554-562. Go to original source... Go to PubMed...
  63. Pieterse C.M.J., Leon-Reyes A., Van der Ent S., Van Wees S.C.M. (2009): Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5: 308-316. Go to original source... Go to PubMed...
  64. Pioli R.N., Mozzoni L., Morandi E.N. (2004): First report of pathogenic association between Fusarium graminearum and soybean. Plant Disease, 88: 220. Go to original source... Go to PubMed...
  65. Pirgozliev S.R., Edwards S.G., Hare M.C., Jenkinson P. (2003): Strategies for the control of Fusarium head bight in cereals. European Journal of Plant Pathology, 109: 731-742. Go to original source...
  66. Pritsch C., Muehlbauer G.J., Bushnell W.R., Somers D.A., Vance C.P. (2000): Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Molecular Plant and Microbe Interactions, 13: 159-169. Go to original source... Go to PubMed...
  67. Qi P.-F., Johnston A., Balcerzak M., Rocheleau H., Harris L.J., Long X.-Y., Wei Y.-M., Zheng Y.-L., Ouellet T. (2012): Effect of salicylic acid on Fusarium graminearum, the major causal agent of Fusarium head blight in wheat. Fungal Biology, 116: 413-426. Go to original source... Go to PubMed...
  68. Rick C.M., Yoder J.I. (1988): Classical and molecular genetics of tomato: highlights and perspectives. Annual Review of Genetics, 22: 281-300. Go to original source... Go to PubMed...
  69. Schmeitzl C., Varga E., Warth B., Kugler K.G., Malachová A., Michlmayr H., Wiesenberger G., Mayer K.F.X., Mewer H.-W., Krska R., Schuhmacher R., Berthiller F., Adam G. (2016): Identification and characterization of carboxylesterases from Brachypodium distachyon trichothecene mycotoxins. Toxins, 8: 6. Go to original source... Go to PubMed...
  70. Schneebeli K., Mathesius U., Watt M. (2015): Brachypodium distachyon is a pathosystem model for the study of the wheat disease rhizoctonia root rot. Plant Pathology, 64: 91-100. Go to original source...
  71. Silva V.N., Campos Fernandes F.M., Cortez A., Ribeiro D.H.B., Almeida A.P., Hassegawa R.H., Correa B. (2006): Characterization and genetic variability of Fusarium verticillioides strains isolated from corn and sorghum in Brazil based on fumonisins production, microsatellites, mating type locus, and mating crosses. Canadian Journal of Microbiology, 52: 798-804. Go to original source... Go to PubMed...
  72. Somerville C., Koornneef M. (2002): A fortunate choice: the history of Arabidopsis as a model plant. Nature, 3: 883-889. Go to original source... Go to PubMed...
  73. Song S., Qi T., Wasternack C., Xie D. (2014): Jasmonate signaling and crosstalk with gibberellin and ethylene. Current Opinion in Plant Biology, 21: 112-119. Go to original source... Go to PubMed...
  74. The International Brachypodium Iniciative (2010): Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463: 763-768. Go to original source... Go to PubMed...
  75. Thomma B.P.H.J., Penninckx I.A., Broekaert W.F., Cammue B.P.A. (2001): The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology, 13: 63-68. Go to original source... Go to PubMed...
  76. Tomato Genome Consortium (2012): The tomato genome sequence provides insights into freshly fruit evolution. Nature, 485: 635-641. Go to original source... Go to PubMed...
  77. Urban M., Daniels S., Mott E., Hammond-Kosack K. (2002): Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. The Plant Journal, 32: 961-973. Go to original source... Go to PubMed...
  78. Vain P. (2011): Brachypodium as a model system for grass research. Journal of Cereal Science, 54: 1-7. Go to original source...
  79. Van Poecke R.M.P., Dicke M. (2004): Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biology, 6: 387-401. Go to original source... Go to PubMed...
  80. Vlot A.C., Dempsey D.M.A., Klessig D.F. (2009): Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47: 177-206. Go to original source... Go to PubMed...
  81. Vogel J.P., Garvin D.F., Mockler T.C., Schmutz J., Rokhsar D., Bevan M.W. (2010): Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463: 763-768. Go to original source... Go to PubMed...
  82. Walters D.R., McRoberts N. (2006): Plants and biotrophs: a pivotal role for cytokinins. Trends in Plant Science, 11: 581-586. Go to original source... Go to PubMed...
  83. Wang Z.-Y. (2012): Brassinosteroids modulate plant immunity at multiple levels. Proceedings of the National Academy of Sciences of the United States of America, 109: 7-8. Go to original source... Go to PubMed...
  84. Wang K., Liao Y., Kan J., Han L., Zheng Y. (2015): Response of direct or priming defense against Botrytis cinerea to methyl jasmonates treatment at different concentrations in grape berries. International Journal of Food Microbiology, 194: 32-39. Go to original source... Go to PubMed...
  85. Yasuda M., Ishikawa A., Jikumaru Y., Seki M., Umezawa T., Asami T., Maruyama-Nakashita A., Kudo T., Shinozaki K., Yoshida S., Nakashita H. (2008): Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. The Plant Cell, 20: 1678-1692. Go to original source... Go to PubMed...
  86. Zhu J.-Y., Sae-Seaw J., Wang Z.-Y. (2013): Brassinosteroid signaling. Development, 140: 1615-1620. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.