Plant Protect. Sci., 2018, 54(4):215-221 | DOI: 10.17221/158/2017-PPS

Cloning and characterisation of nanobodies against the coat protein of Zucchini yellow mosaic virusOriginal Paper

Adel M. Zakri1*, Abdullah A. Al-Doss1, Markus Sack2, Ahmed A. Ali1, Emad M. Samara3, Basem S. Ahmed1, Mahmoud. A. Amer4, Omar. A. Abdalla4, Mohammed A. Al-Saleh4
1 Department of Plant Production, 3Department of Animal Production and 4Department of Plant Protection, College of Food &
2 Agriculture Science, King Saud University, Riyadh, Saudi Arabia
3 Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany

Zucchini yellow mosaic virus (ZYMV), in the family Potyviridae, causes an economically important disease. Antibodies are valuable reagents for diagnostic assays to rapidly detect viral infection. Here, we report the isolation of camel-derived variable domains of the heavy chain antibody (VHH, also called nanobodies) directed against the coat protein (CP) of ZYMV. Several nanobodies that specifically recognise ZYMV-CP were identified. The isolated nanobodies showed binding not only to recombinant ZYMV-CP but also to native ZYMV, indicating that these nanobodies can be used in diagnostic tools to detect viral infections.

Keywords: nanobodies; VHH; naïve library; phage display

Published: December 31, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zakri AM, Al-Doss AA, Sack M, Ali AA, Samara EM, Ahmed BS, et al.. Cloning and characterisation of nanobodies against the coat protein of Zucchini yellow mosaic virus. Plant Protect. Sci. 2018;54(4):215-221. doi: 10.17221/158/2017-PPS.
Download citation

References

  1. Abbady A. Q., Al-Mariri A., Zarkawi M., A. Al-Assad A., Muyldermans S. (2011): Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel. Veterinary Immunology and Immunopathology, 142: 49-56. Go to original source... Go to PubMed...
  2. Al-Saleh M.A. (1994): Identification of viruses infecting cucurbits in the central region of Saudi Arabia and evaluation of different cucurbits sp. to the most important ones. [MSc Thesis.] King Saud University, Saudi Arabia.
  3. Al-Saleh M.A., Amer M.A., Al-Shahwan I.M., Abdalla O.A., Zakri M.A. (2014): Characterization of different isolates of Zucchini yellow mosaic virus from cucurbits in Saudi Arabia. African Journal of Microbiology Research, 8: 1987-1994. Go to original source...
  4. Al-Shahwan I., Abdalla O., Al-Saleh M. (1995): Response of greenhouse-grown cucumber cultivars to an isolate of ZYMV. Plant Disease, 97: 898-901. Go to original source...
  5. Blua M.J., Perring T.M. (1989): Effect of zucchini yellow mosaic-virus on development and yield of cantaloupe (Cucumismelo). Plant Disease, 73: 317-320. Go to original source...
  6. Cervera M., Esteban O., Gil M., Gorris M.T., Martinez M.C., Pena L., Cambra M. (2010). Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Research, 19: 1001-1015. Go to original source... Go to PubMed...
  7. Chung W.Y., Sack M., Carter R., Spiegel H., Fischer R., Hirst T.R., Williams N.A., James R.F. (2008): Phage-display derived single-chain fragment variable (scFv) antibodies recognizing conformational epitopes of Escherichia coli heat-labile enterotoxin B-subunit. Journal of Immunological Methods, 339: 115-123. Go to original source... Go to PubMed...
  8. Cortez-Retamozo V., Backmann N., Senter P.D., Wernery U., De Baetselier P., Muyldermans S., Revets H. (2004): Efficient cancer therapy with a nanobody-based conjugate. Cancer Research, 64: 2853-2857. Go to original source... Go to PubMed...
  9. De Buck S., Nolf J., De Meyer T., Virdi V., De Wilde K., Van Lerberge E., Van Droogenbroeck B., Depicker A. (2013): Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. Plant Biotechnology Journal, 11: 1006-1016. Go to original source... Go to PubMed...
  10. Desbiez C., Wipf-Scheibel C., Lecoq H. (2002): Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) with special reference to Caribbean islands. Virus Research, 85: 5-16. Go to original source... Go to PubMed...
  11. Dietzgen R.G., Sander E. (1982): Monoclonal antibodies against a plant virus. Archives of Virology, 74: 197-204. Go to original source... Go to PubMed...
  12. Flajnik M.F., Deschacht N., Muyldermans S. (2011): A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biology, 9: e1001120. doi: 10.1371/journal.pbio.1001120 Go to original source... Go to PubMed...
  13. Gal-On A. (2007): Zucchini yellow mosaic virus: insect transmission and pathogenicity - the tails of two proteins. Molecular Plant Pathology, 8: 139-150. Go to original source... Go to PubMed...
  14. Ghannam A., Kumari S., Muyldermans S., Abbady A.Q. (2015): Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. Plant Molecular Biology, 87: 355-369. Go to original source... Go to PubMed...
  15. Grafton-Cardwell E.E. Perring T.M., Smith R.F., Valencia J., Farrar C.A. (1996): Occurrence of mosaic viruses in melons in the Central Valley of California. Plant Disease, 80: 1092-1097. Go to original source...
  16. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E.B., Bendahman N., Hamers R. (1993): Naturally occurring antibodies devoid of light chains. Nature, 363: 446-448. Go to original source... Go to PubMed...
  17. Harper K., Kerschbaumer R.J., Ziegler A., Macintosh S.M., Cowan G.H., Himmler G., Mayo M.A., Torrance L. (1997): A scFv-alkaline phosphatase fusion protein which detects potato leafroll luteovirus in plant extracts by ELISA. Journal of Virological Methods, 63: 237-242. Go to original source... Go to PubMed...
  18. Harries P., Ding B. (2011): Cellular factors in plant virus movement: at the leading edge of macromolecular trafficking in plants. Virology, 411: 237-243. Go to original source... Go to PubMed...
  19. Hassanzadeh-Ghassabeh G., Devoogdt N., De Pauw P., Vincke C., Muyldermans S. (2013): Nanobodies and their potential applications. Nanomedicine (Lond), 8: 1013-1026. Go to original source... Go to PubMed...
  20. Head G.P., Carroll M.W., Evans S.P., Rule D.M., Willse A.R., Clark T.L., Storer N.P., Flannagan R.D., Samuel L.W., Meinke L.J. (2017): Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Management Science, 73: 1883-1899. Go to original source... Go to PubMed...
  21. Heinlein M. (2015): Plant virus replication and movement. Virology, 479-480: 657-671. Go to original source... Go to PubMed...
  22. Kihara T. (1985): Self-crystallizing molecular models. VII. Plant-virus coat protein. Acta Crystallographica Section A, 41: 556-559. Go to original source...
  23. Koide A., Tereshko V., Uysal S., Margalef K., Kossiakoff A.A., Koide S. (2007): Exploring the capacity of minimalist protein interfaces: interface energetics and affinity maturation to picomolar KD of a single-domain antibody with a flat paratope. Journal of Molecular Biology, 373: 941-953. Go to original source... Go to PubMed...
  24. Laliberte J.F., Sanfacon H. (2010): Cellular remodeling during plant virus infection. Annual Review of Phytopathology, 48: 69-91. Go to original source... Go to PubMed...
  25. Lucas W.J. (2006): Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology, 344: 169-184. Go to original source... Go to PubMed...
  26. Magnus C., Reh L., Trkola A. (2016): HIV-1 resistance to neutralizing antibodies: determination of antibody concentrahttps://doi.org/10.17221/158/2017-PPS tions leading to escape mutant evolution. Virus Research, 218: 57-70. Go to original source... Go to PubMed...
  27. Monegal A., Ami D., Martinelli C., Huang H., Aliprandi M., Capasso P., Francavilla C., Ossolengo G., de Marco A. (2009): Immunological applications of single-domain llama recombinant antibodies isolated from a naive library. Protein Engineering, Design & Selection, 22: 273-280. Go to original source... Go to PubMed...
  28. Muyldermans S. (2013): Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry, 82: 775-797. Go to original source... Go to PubMed...
  29. Muyldermans S., Lauwereys M. (1999): Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. Journal of Molecular Recognition 12: 131-140. Go to original source... Go to PubMed...
  30. Nickel H., Kawchuk L., Twyman R.M., Zimmermann S., Junghans H., Winter S., Fischer R., Prufer D. (2008): Plantibodymediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Research, 136: 140-145. Go to original source... Go to PubMed...
  31. Niehl A., Heinlein M. (2011): Cellular pathways for viral transport through plasmodesmata. Protoplasma, 248: 75-99. Go to original source... Go to PubMed...
  32. Orecchia M., Nolke G., Saldarelli P., Dell'Orco M., UhdeHolzem K., Sack M., Martelli G., Fischer R., Schillberg S. (2008): Generation and characterization of a recombinant antibody fragment that binds to the coat protein of grapevine leafroll-associated virus 3. Archives of Virology, 153: 1075-1084. Go to original source... Go to PubMed...
  33. Revets H., De Baetselier P., Muyldermans S. (2005): Nanobodies as novel agents for cancer therapy. Expert Opinion on Biological Therapy, 5: 111-124. Go to original source... Go to PubMed...
  34. Schoelz J.E., Harries P.A., Nelson R.S. (2011): Intracellular transport of plant viruses: finding the door out of the cell. Molecular Plant, 4: 813-831. Go to original source... Go to PubMed...
  35. Shukla D.D., Ward C.W. (1989): Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. In: Maramorosch K., Murphy F.A., Aaron J.S.: Advances in Virus Research. Vol. 36. Academic Press: 273-314. Go to original source...
  36. Simmons H.E., Dunham J.P., Zinn K.E., Munkvold G.P., Holmes E.C., Stephenson A.G. (2013): Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections. Virus Research, 176: 259-264. Go to original source... Go to PubMed...
  37. Stijlemans B., Caljon G., Natesan S.K., Saerens D., Conrath K., Perez-Morga D., Skepper J.N., Nikolaou A., Brys L., Pays E., Magez S., Field M.C., De Baetselier P., Muyldermans S. (2011): High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathogens, 7: e1002072. doi: 10.1371/journal.ppat.1002072 Go to original source... Go to PubMed...
  38. Teh Y.H., Kavanagh T.A. (2010): High-level expression of Camelid nanobodies in Nicotiana benthamiana. Transgenic Research, 19: 575-586. Go to original source... Go to PubMed...
  39. Tilsner J., Oparka K.J. (2012): The connection between replication and movement of plant RNA viruses. Current Opinion in Virology, 2: 705-711. Go to original source... Go to PubMed...
  40. Tobias H., Kulhmann, Gullner G. (2012): Recovery-type resistance to Zucchini yellow mosaic virus in oilseed pumpkin. In: Proceedings Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Oct 15-18, 2012, Antalya, Turkey: 222-229.
  41. Ueki S., Spektor R., Natale D.M., Citovsky V. (2010): ANK, a host cytoplasmic receptor for the Tobacco mosaic virus cellto-cell movement protein, facilitates intercellular transport through plasmodesmata. PLoS Pathogens. 6: e1001201. doi: 10.1371/journal.ppat.1001201 Go to original source... Go to PubMed...
  42. Verheesen P., ten Haaft M.R., Lindner N., Verrips C.T., de Haard J.J. (2003): Beneficial properties of single-domain antibody fragments for application in immunoaffinity purification and immuno-perfusion chromatography. Biochimica et Biophysica Acta, 1624: 21-28. Go to original source... Go to PubMed...
  43. Vincke C., Gutierrez C., Wernery U., Devoogdt N., Hassanzadeh-Ghassabeh G., Muyldermans S. (2012): Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. Methods in Molecular Biology, 907: 145-176. Go to original source... Go to PubMed...
  44. Wesolowski J., Alzogaray V., Reyelt J., Unger M., Juarez K., Urrutia M., Cauerhff A., Danquah W., Rissiek B., Scheuplein F., Schwarz N., Adriouch S., Boyer O., Seman M., Licea A., Serreze D.V., Goldbaum F.A., Haag F., Koch-Nolte F. (2009): Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Medical Microbiology and Immunology, 198: 157-174. Go to original source... Go to PubMed...
  45. Winichayakul S., Pernthaner A., Scott R., Vlaming R., Roberts N. (2009): Head-to-tail fusions of camelid antibodies can be expressed in planta and bind in rumen fluid. Biotechnology and Applied Biochemistry 53: 111-122. Go to original source... Go to PubMed...
  46. Zakri A.M., Ziegler A., Torrance L., Fischer R., Commandeur U. (2010): Generation and characterization of a scFv against recombinant coat protein of the geminivirus tomato leaf curl New Delhi virus. Archives of Virology, 155: 335-342. Go to original source... Go to PubMed...
  47. Zell R., Fritz H.J. (1987): DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methylcytosine residues. The EMBO Journal, 6: 1809-1815. Go to original source... Go to PubMed...
  48. Ziegler A., Torrance L. (2002): Applications of recombinant antibodies in plant pathology. Molecular Plant Pathology, 3: 401-407. Go to original source... Go to PubMed...
  49. Ziegler A., Torrance L., Macintosh S.M., Cowan G.H., Mayo M.A. (1995): Cucumber mosaic cucumovirus antibodies from a synthetic phage display library. Virology, 214: 235-238. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.