Plant Protect. Sci., 2019, 55(2):73-80 | DOI: 10.17221/94/2018-PPS

Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thalianaOriginal Paper

Zlata V. Ogneva1, Andrey R. Suprun1,2, Alexandra S. Dubrovina1, Konstantin V. Kiselev*,1,2
1 Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
2 Department of Biodiversity, Far Eastern Federal University, Vladivostok, Russia

The effect of 5-azacytidine (5A)-induced DNA hypomethylation on the growth and abiotic stress tolerance of Arabidopsis thaliana were analysed. Growth analysis revealed that aqueous solutions of 5A added to the soil did not affect the fresh and dry biomass accumulation but led to a higher percentage of flowering A. thaliana plants after four weeks of cultivation. The 5A treatment considerably lowered survival rates of Arabidopsis plants under high soil salinity, heat stress, and drought, while it did not affect the survival rates after freezing stress. 5A eliminated the stimulatory effect of the heat and drought stresses on the transcriptional levels of a number of stress-inducible genes, such as DREB1, LEA, SOS1, or RD29A. A less clear but similar trend has been detected for the effect of 5A on expression of the stress-inducible genes under salt and cold stresses. The data indicate that DNA methylation is an important mechanism regulating plant abiotic stress resistance.

Keywords: 5A; DNA methylation; freezing; drought; heat; soil salinity

Published: June 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ogneva ZV, Suprun AR, Dubrovina AS, Kiselev KV. Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant Protect. Sci. 2019;55(2):73-80. doi: 10.17221/94/2018-PPS.
Download citation

Supplementary files:

Download file94-2018 Kiselev Suppl T1.pdf

File size: 183.73 kB

References

  1. Aina R., Sgorbati S., Santagostino A., Labra M., Ghiani A., Citterio S. (2004): Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum, 121: 472-480. Go to original source...
  2. Al-Lawati A., Al-Bahry S., Victor R., Al-Lawati A.H., Yaish M.W. (2016): Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genetics and Molecular Research, 15: UNSP gmr.15018299. doi: 10.4238/gmr.15018299 Go to original source... Go to PubMed...
  3. Bartels A., Han Q., Nair P., Stacey L., Gaynier H., Mosley M., Huang Q.Q., Pearson J.K., Hsieh T.F., An Y.C., Xiao W. (2018): Dynamic DNA methylation in plant growth and development. International Journal of Molecular Sciences, 19: 2144. doi: 10.3390/ijms19072144 Go to original source... Go to PubMed...
  4. Boyko A., Golubov A., Bilichak A., Kovalchuk I. (2010): Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiology, 51: 1066-1078. Go to original source... Go to PubMed...
  5. Burn J.E., Bagnall D.J., Metzger J.D., Dennis E.S., Peacock W.J. (1993): DNA methylation, vernalization, and the initiation of flowering. Proceedings of the National Academy of Sciences of the United States, 90: 287-291. Go to original source... Go to PubMed...
  6. Choi C.S., Sano H. (2007): Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics and Genomics, 277: 589-600. Go to original source... Go to PubMed...
  7. Deleris A., Greenberg M.V., Ausin I., Law R.W., Moissiard G., Schubert D., Jacobsen S.E. (2010): Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO Reports, 11: 950-955. Go to original source... Go to PubMed...
  8. Deng J., Kou S., Zou Q., Li P., Zhang C., Yuan P. (2018): DNA methylation and plant stress responses. Journal of Plant Physiology and Pathology, 6: 4. doi: 10.4172/2329955X.1000182 Go to original source...
  9. Dubrovina A.S., Kiselev K.V. (2016): Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biology (Stuttg), 18: 185-196. Go to original source... Go to PubMed...
  10. Dubrovina A.S., Kiselev K.V., Khristenko V.S., Aleynova O.A. (2017): The calcium-dependent protein kinase gene VaCPK29 is involved in grapevine responses to heat and osmotic stresses. Plant Growth Regulation, 82: 79-89. Go to original source...
  11. Duan H.Y., Liu W.X., Li J.Y., Ding W.K., Zhu Y.Q., Wang H.N., Jiang L.N., Zhou Y.Q. (2016): Growth and DNA methylation level of Triticum aestivum seedlings treated with 5-azacytidine. Pakistan Journal of Botany, 48: 1585-1591.
  12. Fieldes M.A. (1994): Heritable effects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes. Genome, 37: 1-11. Go to original source... Go to PubMed...
  13. Gehring M., Henikoff S. (2007): DNA methylation dynamics in plant genomes. Biochimica et Biophysica Acta - Gene Structure and Expression, 1769: 276-286. Go to original source... Go to PubMed...
  14. Griffin P.T., Niederhuth C.E., Schmitz R.J. (2016): A comparative analysis of 5-azacytidine- and zebularineinduced DNA demethylation. G3: Genes, Genomes, Genetics, 6: 2773-2780. Go to original source... Go to PubMed...
  15. House M.A. (2010): Molecular studies of 5-azacytidineinduced early-flowering lines of flax. [MSc Dissertation.] Canada, Wilfrid Laurier University. Available at https://scholars.wlu.ca/etd/966, MSD-966
  16. Hua S., Qi B., Fu Y.P., Li Y. (2017): DNA methylation changes in Pleurotus eryngii subsp. tuoliensis (Bailinggu) in response to low temperature stress. International Journal of Agriculture and Biology, 19: 328-334. Go to original source...
  17. Kanchanaketu T., Hongtrakul V. (2015): Treatment of 5-azacytidine as DNA demethylating agent in Jatropha curcas L. Kasetsart Journal (Nat Sc.), 49: 524-535.
  18. Karan R., DeLeon T., Biradar H., Subudhi P.K. (2012): Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PloS ONE 7(6): e40203. doi: 10.1371/journal.pone.0040203 Go to original source... Go to PubMed...
  19. Kiselev K.V., Shumakova O.A., Manyakhin A.Y., Mazeika A.N. (2012): Influence of calcium influx induced by the calcium ionophore, A23187, on resveratrol content and the expression of CDPK and STS genes in the cell cultures of Vitis amurensis. Plant Growth Regulation, 68: 371-381. Go to original source...
  20. Kiselev K.V., Tyunin A.P., Ogneva Z.V., Dubrovina A.S. (2015): Age-associated alterations in the somatic mutation level in Arabidopsis thaliana. Plant Growth Regulation, 75: 493-501. Go to original source...
  21. Kiselev K.V., Aleynova O.A., Grigorchuk V.P., Dubrovina A.S. (2017): Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta, 245: 151-159. Go to original source... Go to PubMed...
  22. Labra M., Grassi F., Imazio S., Di Fabio T., Citterio S., Sgorbati S., Agradi E. (2004): Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere, 54: 1049-1058. Go to original source... Go to PubMed...
  23. Li S.F., Zhang G.J., Yuan J.H., Deng C.L., Lu L.D., Gao W.J. (2015): Effect of 5-azaC on the growth, flowering time and sexual phenotype of spinach. Russian Journal of Plant Physiology, 62: 670-675. Go to original source...
  24. Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method. Methods, 25: 402-408. Go to original source... Go to PubMed...
  25. Ogneva Z.V., Dubrovina A.S., Kiselev K.V. (2016): Age-associated alterations in DNA methylation and expression of methyltransferase and demethylase genes in Arabidopsis thaliana. Biologia Plantarum, 60: 628-634. Go to original source...
  26. Omidvar V., Fellner M. (2015): DNA methylation and transcriptomic changes in response to different lights and stresses in 7B-1 male-sterile tomato. PloS ONE, 10(4): e0121864. doi: 10.1371/journal.pone.0121864 Go to original source... Go to PubMed...
  27. Sade N., Del Mar Rubio-Wilhelmi M., Umnajkitikorn K., Blumwald E. (2018): Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany, 69: 845-853. Go to original source... Go to PubMed...
  28. Shan X., Wang X., Yang G., Wu Y., Su S., Li S., Liu H., Yuan Y. (2013): Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylationsensitive amplified polymorphisms. Journal of Plant Biology 56: 32-38. Go to original source...
  29. Steward N., Ito M., Yamaguchi Y., Koizumi N., Sano H. (2002): Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry, 277: 37741-37746. Go to original source... Go to PubMed...
  30. Tyunin A.P., Ageenko N.V., Kiselev K.V. (2016): Effects of 5-azacytidine-induced DNA demethylation on polyketide synthase gene expression in larvae of sea urchin Strongylocentrotus intermedius. Biotechnology Letters, 38: 2035-2041. Go to original source... Go to PubMed...
  31. Vanyushin B.F., Ashapkin V.V. (2011): DNA methylation in higher plants: past, present and future. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1809: 360-368. Go to original source... Go to PubMed...
  32. Zhang X., Jacobsen S.E. (2006): Genetic analyses of DNA methyltransferases in Arabidopsis thaliana. Cold Spring Harbor Symposia on Quantitative Biology, 71: 439-447. Go to original source... Go to PubMed...
  33. Zhong L., Xu Y.H., Wang J.B. (2010): The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. Biologia Plantarum, 54: 753-756. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.