Plant Protect. Sci., 2019, 55(2):93-101 | DOI: 10.17221/98/2018-PPS
Inhibitory effect of the glucosinolate-myrosinase system on Phytophthora cinnamomi and Pythium spiculumOriginal Paper
- 1 IFAPA Centro Las Torres-Tomejil, Alcalá del Río (Sevilla), Spain
- 2 Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa, CSIC, Sevilla, Spain
Glucosinolate extracts from sprouts of common Brassica nigra, B. juncea cv. Scala, B. carinata cv. Eleven, and Sinapis alba cv. Ludique were analysed by reversed phase high-performance liquid chromatography-diode array detection-mass spectrometry. The effect of the glucosinolate-myrosinase system on in vitro mycelial growth of Phytophthora cinnamomi Rands and Pythium spiculum B. Paul was assessed. Likewise, sinigrin and sinalbin monohydrate commercial standards were also tested. The extracts from B. carinata, which contained 159 mmol/g plant DW equivalent (85% sinigrin, 5% gluconapin, and 3% glucotropaeolin), were the most effective against Phytophthora and Pythium isolates used in this study. However, the extract from S. alba, which contained 1 180 mmol/g (100% sinalbin), did not inhibit the mycelial growth of the isolates tested. The use of the glucosinolate-myrosinase system provides important additional information to advance in the implementation of field application of brassicaceous amendments for the control of soil-borne pathogens.
Keywords: isothiocyanates; plant defence; Brassica; Phytophthora spp.; Pythium spp.
Published: June 30, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Angus J.F., Gardner P.A., Kirkegaard J.A., Desmachelier J.M. (1994): Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant and Soil, 162: 107-112.
Go to original source...
- Barrau C., Porras M., Romero E., Zurera C., Ramos N., Soares C., Neto E., Marreiros A., Entrudo J., Romero F. (2009): Brassica carinata for control of Phytophthora spp. in strawberry field crops. Revista de Ciências Agrárias, 32: 135-138.
- Brasier C.M., Robredo F., Ferraz J.F.P. (1993): Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42: 140-145.
Go to original source...
- Brown P.D., Morra M.J.H. (1996): Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant and Soil, 181: 307-316.
Go to original source...
- Chan M.K.Y., Close R.C. (1987): Aphanomyces root rot of peas 3. Control by the use of cruciferous amendments. New Zealand Journal of Agricultural Research, 30: 225-233.
Go to original source...
- De Vita P., Serrano M.S., Ramo C., Aponte C., García L.V., Belbahri L., Sánchez M.E. (2013): First report of root rot caused by Pythium spiculum affecting cork oaks at Doñana Biological Reserve in Spain. Plant Disease, 97: 991-991.
Go to original source...
Go to PubMed...
- Fabre N., Poinsot V., Debrauwer L., Vigor C., Tulliez J., Fouraste I., Moulis C. (2007): Characterization of glucosinolates using electro spray ion trap and electro spray quadrupole time of flight mass. Phytochemical Analysis, 18: 306-319.
Go to original source...
Go to PubMed...
- Kirkegaard J.A., Sarwar M. (1998): Biofumigation potential of brassicas I. Variation in glucosinolates profile of diverse field grown brassicas. Plant and Soil, 201: 71-89.
Go to original source...
- Kliebenstein D.J., Kroymann J., Mitchell-Olds T. (2005). The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology, 8: 264-271.
Go to original source...
Go to PubMed...
- Kumar S., Andy A. (2012): Minireview: Health promoting bioactive phytochemicals from Brassica. International Food Research Journal 19: 141-152.
- Kurt S., Gunes U., Soylu E.M., Emine M. (2011): In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Management Science, 67: 869-875.
Go to original source...
Go to PubMed...
- Lazzeri L., Tacconi R., Palmieri S. (1993): In vitro activity of some glucosinolates and their reactions products toward a population of the nematode Heterodera schachtii. Journal of Agricultural and Food Chemistry, 41: 825-829.
Go to original source...
- Lazzeri L., Manici L.M. (2001): Allelopathic effect of glucosinolate-containing plant green manure on Pythium sp and total fungal population in soil. HortScience, 36: 1283-1289.
Go to original source...
- Lazzeri L., Curto G., Leoni O., Dallavalle E. (2004): Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. Journal of Agricultural and Food Chemistry, 52: 6703-6707.
Go to original source...
Go to PubMed...
- Leoni O., Iori R., Esposito E., Menegatti E., Cortesi R., Nastruzzi C. (1997): Myrosinase-generated isothiocyanates from glucosinolates: Isolatiom, characterization and in vitro antiproliferative studies. Bioorganic & Medicinal Chemistry, 5: 1799-1806.
Go to original source...
Go to PubMed...
- Lowe S.J., Browne M., Boudjelas S. (2000): 100 of the World's worst invasive alien species. Auckland, New Zealand: IUCN/SSC Invasive Species Specialist Group. Acceced at http://www.issg.org/publications.ht-m#worst100.
- Malabed R.S, Noel M.G., Aton III B.C., Toribio E.AF. (2014): Characterization of the glucosinolates and isothiocyanates in mustard (Brassica juncea L.) extracts and determination of its myrosinase activity and antioxidant capacity. DLSU Research Congress 2014, Vol. 2, Series 1: 1-7 (FNH-I-003).
- Manici L.M., Lazzeri L., Palmieri S. (1997): In vitro fungitoxic activity of some glucosinolates and their enzymederived products toward plant pathogenic fungi. Journal of Agricultural and Food Chemistry, 45: 2768-2773.
Go to original source...
- Manyes L., Luciano F.B., Manes J., Meca G. (2015): In vitro antifungal activity of allyl isothiocyanate (AITC) against Aspergillus parasiticus and Penicillium expansum and evaluation of the AITC estimated daily intake. Food and Chemical Toxicology, 83: 293-299.
Go to original source...
Go to PubMed...
- Mari M., Leoni O., Bernardi R., Neri P. (2008): Control of brown rot on stone fruit by synthetic and glucosinolatederived isothiocyanates. Postharvest Biology and Technology, 47: 61-67.
Go to original source...
- Martín J.C., Higuera B.L. (2016): Glucosinolate composition of Colombian accessions of mashua (Tropaeolum tuberosum Ruíz & Pavón), structural elucidation of the predominant glucosinolate and assessment of its antifungal activity. Journal of the Science of Food and Agriculture, 96: 4702-4712.
Go to original source...
Go to PubMed...
- Mayton H.S., Olivier C., Vaughn S.F., Loria R. (1996): Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology, 86: 267-271. https://doi.org/10.17221/98/2018-PPS
Go to original source...
- Mazzola M., Granatstein D.M., Elfving D.C., Mullinix K. (2001): Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology, 91: 673-679.
Go to original source...
Go to PubMed...
- Morales-Rodríguez C., Picon-Toro J., Palo C., Palo E.J., García A., Rodríguez-Molina C. (2012): In vitro inhibition of mycelial growth of Phytophthora nicotianae Breda de Haan from different hosts by Brassicaceae species. Effect of the developmental stage of the biofumigant plants. Pest Management Science, 68: 1317-1322.
Go to original source...
Go to PubMed...
- Olivier C., Vaughn S.F., Mizubuti E.S.G., Loria R. (1999): Variation in allyl isithiocyanate production within Brassica species and correlation with fungicidal activity. Journal of Chemical Ecology. 25: 2687-2701.
Go to original source...
- Rask L., Andreasson E., Ekbom B., Eriksson S., Pontoppidan B., Meijer J. (2000): Myrosinase: gen family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology. 42: 93-113.
Go to original source...
- Ríos P., Obregón S., de Haro A., Fernández P., Serrano M.S., Sánchez M.E. (2016a): Effect of Brassica biofumigant amendments on different stages of the life cycle of Phytophthora cinnamomi. Journal of Phytopathology. 164: 582-594.
Go to original source...
- Ríos P., Obregón S., González M., de Haro A., Sánchez M.E. (2016b): Screening brassicaceous plants as biofumigants for management of Phytophthora cinnamomi oak disease. Forest Pathology, 46: 652-659.
Go to original source...
- Rodríguez-Molina M.C., Santiago R., Blanco A., Pozo J.D., Colino M.I., Palo E.J., Torres L.M. (2003): Detección de Phytophthora cinnamomi en dehesas de Extremadura afectadas por "seca" y su comportamiento in vitro. Boletín Sanidad Vegetal Plagas, 29: 627-640.
- Sánchez M. E., Caetano P. C., Ferraz J., Trapero A. (2002): Phytophthora disease of Quercus ilex in southwestern Spain. Forest Pathology, 32: 5-18.
Go to original source...
- Sarwar M., Kirkegaard J.A., Wong P.T.W., Desmarchelier J.M. (1998): Biofumigation potential of brassicas: III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant and Soil, 201: 103-112.
Go to original source...
- Serrano M.S., De Vita P., Fernández-Rebollo P., Coelho A.C., Belbahri L., Sánchez M.E. (2012). Phytophthora cinnamomi and Pythium spiculum as main agents of Quercus decline in southern Spain and Portugal. IOBC/WPRS Bulletin. 76: 97-100.
- Smallegange R.C., van Loon J.J.A., Blatt S.E., Harvey J.A., Agerbirk N., Dicke M. (2007): Flower vs. leaf feeding by Pieris brassicae: Glucosinolate-rich flower tissues are preferred and sustain higher growth rate. Journal of Chemical Ecology, 33: 1831-1844.
Go to original source...
Go to PubMed...
- Smolinska U. Morra M.J., Knudsen G.R., James R.L. (2003): Isothiocyanates produced by Brassicaeae species as inhibitors of Fusarium oxysporum. Plant Disease, 87: 407-412.
Go to original source...
Go to PubMed...
- Spak J., Kolarova L., Lewis J., Fenwick G.R. (1993): The effect of glucosinolates (mustard oil glycosides) and products of their enzymic degradation on the infectivity of turnip mosaic virus. Biologia Plantarum, 35: 73-80.
Go to original source...
- Troncoso-Rojas R., Sánchez-Estrada A., Ruelas C., García H.S., Tiznado-Hernández M.E. (2005): Effect of benzyl isothiocyanate on tomato fruit infection development by Alternaria alternata. Journal of the Science of Food and Agriculture, 85: 1427-1434.
Go to original source...
- Tuset J.J., Hinarejos C., Mira J.L., Cobos J.M. (1996): Implicación de Phytophthora cinnamomi Rands en la enfermedad de la "seca" de encinas y alcornoques. Boletín Sanidad Vegetal Plagas. 22: 491-499.
- Ugolini L., Martini C., Lazzeri L., D'Avino L., Mari M. (2014): Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolate-derived allyl-isothiocyanate treatments. Postharvest Biology and Technology, 90: 34-39.
Go to original source...
- Utkhede R.S., Smith E.M. (1991): Phytophthora and Pythium species associated with root of young apple trees and their control. Soil Biology and Biochemistry, 23: 1059-1063.
Go to original source...
- Wang S.Y., Chen C., Yin J. (2010): Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chemistry, 120: 199-204.
Go to original source...
- Wilson A.E., Bergaentzlé M., Bindler F., Marchioni E., Lintz A., Ennahar S. (2013): In vitro efficacies of various isothiocyanates from cruciferous vegetables as antimicrobial agents against foodborne pathogens and spoilage bacteria. Food Control, 30: 318-324.
Go to original source...
- Wu H., Zhang X., Zhang G., Zeng S., Kin K. (2011): Antifungal vapour-phase activity of a combination of allyl isothiocyanate and ethyl isothiocyanate against Botrytis cinerea and Penicillium expansum infection on apples. Journal of Phytopathology, 159: 4050-4455.
Go to original source...
- Yuan G., Wang X., Guo R., Wang Q. (2010): Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121: 1014-1019.
Go to original source...
- Zurera C., Romero E., Porras M., Barrau C., Romero F. (2009): In vitro suppression of Phytophthora cactorum and Verticillium dahliae potential strawberry pathogens by Brassica tissues. Acta Horticulturae, 842: 267-270.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.