Plant Protect. Sci., 2023, 59(2):134-144 | DOI: 10.17221/125/2022-PPS

Comparison of gene expression changes in two wheat varieties with different phenotype to strip rust using RNA-Seq analysisOriginal Paper

Congying Yuan*, Yadi Miao, Huihan Zhang, Shiying Liu, Yaoyao Wang
College of Life Sciences, Luoyang Normal University, Luoyang, Henan, P.R. China

The fungus Puccinia striiformis f. sp. tritici (Pst) is an important threat to wheat production because it can cause wheat stripe rust. The present study aimed to identify new stripe rust resistance genes and to provide a theoretical and practical basis for breeding wheat varieties with broad spectrum, stable, and durable resistance. Wheat leaves inoculated with wheat stripe rust fungus Chinese yellow rust 34 were collected at different time points for transcriptomic analysis based on the wheat stripe rust susceptible varieties AVOCET S (AVS) and AVSYr15NIL [near-isogenic line (NIL) derived from AVS]. The results showed that the number of upregulated genes in the two varieties was 294, 364, 398, and 604, and the number of downregulated genes was 520, 178, 570, and 345 on the 1st, 3rd, 5th, and 7th days post inoculation, respectively. Gene Ontology and Kyoto Encyclopedia of Gene and Genomes enrichment analyses found enrichment of differentially expressed genes in the peroxisome proliferators-activated receptor signaling pathways, plant–pathogen interaction, and styrene acrylic acid biosynthesis that encoded protein kinases, signal transduction, transcription factors, and functional protein components. Differentially expressed genes were randomly selected for quantitative reverse transcription PCR analysis, and the change trend was the same as in the transcriptome data. The results of this study suggest that genes in AVSYr15NIL related to the stripe rust response could be valuable for understanding the mechanisms involved in stripe rust resistance.

Keywords: wheat stripe rust; RNA-seq; differentially expressed genes; DEGs; resistance

Accepted: May 2, 2023; Published: May 17, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yuan C, Miao Y, Zhang H, Liu S, Wang Y. Comparison of gene expression changes in two wheat varieties with different phenotype to strip rust using RNA-Seq analysis. Plant Protect. Sci. 2023;59(2):134-144. doi: 10.17221/125/2022-PPS.
Download citation

References

  1. Andersen E.J., Ali S., Byamukama E., Yen Y., Nepal M.P. (2018): Disease resistance mechanisms in plants. Genes, 9: 339. doi: 10.3390/genes9070339 Go to original source... Go to PubMed...
  2. Cantu D., Pearce S.P., Distelfeld A., Christiansen M.W., Uauy C., Akhunov E., Fahima T., Dubcovsky J. (2011): Effect of the down-regulation of the high grain protein content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics, 12: 1-17. Go to original source... Go to PubMed...
  3. Chauhan H., Khurana N., Nijhavan A., Khurana J.P., Khurana P. (2012): The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell and Environment, 35: 1912-31. Go to original source... Go to PubMed...
  4. Chen X.M. (2005): Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology, 27: 314-37. Go to original source...
  5. Chen X.M. (2013): High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 4: 608-27. Go to original source...
  6. Chen X.M. (2014): Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Canadian Journal of Plant Pathology, 36: 311-26. Go to original source...
  7. Colgan A.M., Cameron A.D., Kröger C. (2017): If it transcribes, we can sequence it: Mining the complexities of host-pathogen-environment interactions using RNA-seq. Current Opinion in Microbiology, 36: 37-46. Go to original source... Go to PubMed...
  8. Corredor-Moreno P., Minter F., Davey P.E., Wegel E., Kular B., Brett P., Lewis C.M., Morgan Y.M.L., Macías Pérez L.A., Korolev A.V., Hill L., Saunders D.G.O. (2021): The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility. The Plant Cell, 33: 1728-47. Go to original source... Go to PubMed...
  9. Duan X.Y., Wang X.J., Fu Y.P., Tang C.L., Li X.R., Cheng Y.L., Hao F., Huang L.L., Kang Z. (2013): TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction. Molecular Plant Pathology, 14: 728-39. Go to original source... Go to PubMed...
  10. Ebeed H.T. (2022): Genome-wide analysis of polyamine biosynthesis genes in wheat reveals gene expression specificity and involvement of STRE and MYB-elements in regulating polyamines under drought. BMC Genomics, 23: 734. doi: 10.1186/s12864-022-08946-2 Go to original source... Go to PubMed...
  11. Frandsen G., Müller-Uri F., Nielsen M., Mundy J., Skriver K. (1996): Novel plant Ca2+-binding protein expressed in response to abscisic acid and osmotic stress. Journal of Biology Chemistry, 271: 343-8. Go to original source... Go to PubMed...
  12. Guo H., Zhang H., Wang G.H., Wang C.Y., Wang Y.J., Liu X.L., Ji W.Q. (2021): Identification and expression analysis of heat-shock proteins in wheat infected with powdery mildew and stripe rust. Plant Genome, 14: e20092. doi: 10.1002/tpg2.20092 Go to original source... Go to PubMed...
  13. Haider M.S., Zhang C., Kurjogi M.M., Pervaiz T., Zheng T., Zhang C.B., Chen L.D., Shangguan L.F., Fang J.G. (2017): Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis. Scientific Reports, 7: 1-15. Go to original source... Go to PubMed...
  14. Jakobek J.L., Smith-Becker J.A., Lindgren P.B. (1999): A bean cDNA expressed during a hypersensitive reaction encodes a putative calcium-binding protein. Molecular Plant-Microbe Interactions, 12: 712-9. Go to original source... Go to PubMed...
  15. Klymiuk V., Yaniv E., Huang L., Raats D., Fatiukha A., Chen S.S., Feng L.H., Frenkel Z., Krugman T., Lidzbarsky G., Chang W., Jääskeläinen M.J., Schudoma C., Paulin L., Laine P., Bariana H., Sela H., Saleem K., Sørensen C.K., Hovmøller M.S., Distelfeld A., Chalhoub B., Dubcovsky J., Korol A.B., Schulman A.H., Fahima T. (2018): Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 9: 3735. doi: 10.1038/s41467-018-06138-9 Go to original source... Go to PubMed...
  16. Leba L.J., Cheval C., Ortiz-Martín I., Ranty B., Beuzón C.R., Galaud J.P., Aldon D. (2012): CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. Plant Journal, 71: 976-89. Go to original source... Go to PubMed...
  17. Lee M.H., Kim K.M., Sang W.G., Kang C.S., Choi C. (2022): Comparison of gene expression changes in three wheat varieties with different susceptibilities to heat stress using RNA-seq analysis. International Journal of Molecular Sciences, 23: 10734. doi: 10.3390/ijms231810734 Go to original source... Go to PubMed...
  18. Li Y.Q., Zhang H.D., Dong F.Y., Zou J., Gao C.B., Zhu Z.W., Liu Y.K. (2022): Multiple roles of wheat calmodulin genes during stress treatment and TaCAM2-D as a positive regulator in response to drought and salt tolerance. International Journal of Biological Macromolecules, 220: 985-97. Go to original source... Go to PubMed...
  19. Ma W., Smigel A., Tsai Y.C., Braam J., Berkowitz G.A. (2008): Innate immunity signaling: Cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiology, 148: 818-28. Go to original source... Go to PubMed...
  20. Ma P.T., Wu L.R., Xu Y.F., Xu H.X., Zhang X., Wang W.R., Liu C., Wang B. (2021): Bulked segregant RNA-seq provides distinctive expression profile against powdery mildew in the wheat genotype YD588. Frontiers in Plant Science, 12: 764978. doi: 10.3389/fpls.2021.764978 Go to original source... Go to PubMed...
  21. Munir S., Liu H., Xing Y.L., Hussain S., Ouyang B., Zhang Y.Y., Li H.X., Ye Z.B. (2016): Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Scientific Reports, 6: 1-20. Go to original source... Go to PubMed...
  22. Pandey G.K., Reddy V.S., Reddy M.K., Deswal R., Bhattacharya A., Sopory S.K. (2002): Transgenic tobacco expressing Entamoeba histolytica calcium binding protein exhibits enhanced growth and tolerance to salt stress. Plant Science, 162: 41-7. Go to original source...
  23. Sun G.Q., Ayrapetov M.K. (2023): Dissection of the catalytic and regulatory structure-function relationships of Csk protein tyrosine kinase. Frontiers in Cell and Developmental Biology, 11: 1148352. doi: 10.3389/fcell.2023.1148352 Go to original source... Go to PubMed...
  24. Qie Y.M., Liu Y., Wang M.N., Li X., See D.R., An D.G., Chen X.M. (2019): Development, validation, and re-selection of wheat lines with pyramided genes Yr64 and Yr15 linked on the short arm of chromosome 1B for resistance to stripe rust. Plant Disease, 103: 51-8. Go to original source... Go to PubMed...
  25. Vranic M., Perochon A., Benbow H., Doohan F.M. (2022): Comprehensive analysis of pathogen-responsive wheat NAC transcription factors: new candidates for crop improvement. G3, 12: jkac247. doi: 10.1093/g3journal/jkac247 Go to original source... Go to PubMed...
  26. Wan A.M., Chen X.M. (2012): Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Disease, 96: 67-74. Go to original source... Go to PubMed...
  27. Wang B., Wei J.P., Song N., Wang N., Zhao J., Kang Z.S. (2018): A novel wheat NAC transcription factor, TaNAC30, negatively regulates resistance of wheat to stripe rust. Journal of Integrative Plant Biology, 60: 432-43. Go to original source... Go to PubMed...
  28. Wang Y.Q., Liu C., Du Y.Y., Cai K.Y., Wang Y.F., Guo J., Guo J., Bai X.X., Kang Z.S., Guo J. (2022): A stripe rust fungal effector PstSIE1 targets TaSGT1 to facilitate pathogen infection. Plant Journal, 112: 1413-28. Go to original source... Go to PubMed...
  29. Wellings C.R. (2011): Global status of stripe rust: A review of historical and current threats. Euphytica, 179: 129-41. Go to original source...
  30. Xu L., Zhu L.F., Tu L.L., Liu L.L., Yuan D.J., Jin L., Lu L., Zhang X.L. (2011): Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. Journal of Experimental Botany, 62: 5607-21. Go to original source... Go to PubMed...
  31. Zeng H.Q., Zhang Y.X., Zhang X.J., Pi E.X., Zhu Y.Y. (2017): Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Frontiers in Plant Science, 8: 877. doi: 10.3389/fpls.2017.00877 Go to original source... Go to PubMed...
  32. Zhang X.B., Ma Q., Li F.J., Ding Y.G., Yi Y., Zhu M., Ding J.F., Li C.Y., Guo W.S., Zhu X.K. (2021): Transcriptome analysis reveals different responsive patterns to nitrogen deficiency in two wheat near-isogenic lines contrasting for nitrogen use efficiency. Biology, 10: 1126. doi: 10.3390/biology10111126 Go to original source... Go to PubMed...
  33. Zhao J., Wang M.N., Chen X.M., Kang Z.S. (2016): Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annual Review of Phytopathology, 54: 207-28. Go to original source... Go to PubMed...
  34. Zhao F.Y., Niu K.J., Tian X.H., Du W.H. (2022): Triticale improvement: Mining of genes related to yellow rust resistance in triticale based on transcriptome sequencing. Frontiers in Plant Science, 13: 883147. doi: 10.3389/fpls.2022.883147 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.