Plant Protect. Sci., 2023, 59(2):202-207 | DOI: 10.17221/86/2022-PPS

Effects of Pseudomonas chlororaphis strain AFS009 and Beauveria bassiana strain GHA against Plumeria rust in HawaiiShort Communication

Philip Waisen1,2, Zhiqiang Cheng1*, Richard Criley3
1 Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, USA
2 Current address: Division of Agriculture and Natural Resources Cooperative Extension, University of California, Indio, USA
3 Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, USA

This study examined the effects of beneficial rhizobacterium Pseudomonas chlororaphis strain AFS009 and entomopathogenic fungus Beauveria bassiana strain GHA against plumeria rust Coleosporium plumeriae. Two preemptive or three curative laboratory experiments and a curative field experiment were conducted to examine the effects of these commercially available biocontrol products. Treatments included the application of B. bassiana at 1.23 g/L and P. chlororaphis at 3 or 9 g/L. Systemic fungicide azoxystrobin applied at 0.12 g/L and water were included as positive and negative controls, respectively. While its effect was insignificant in the field trial, B. bassiana reduced the rust pustule development in one of two preemptive and two of three curative laboratory trials. In contrast, P. chlororaphis applied at 9 g/L suppressed the number of rust pustules in both laboratory and field experiments, demonstrating its potential biological activity against plumeria rust. In the field trial, the effect of P. chlororaphis was observed at 14 days post-treatment, suggesting that an application interval of 14 days on infected plants can take the rust under control.

Keywords: beneficial rhizobacteria; biological control; entomopathogenic fungus; plant disease management

Accepted: April 27, 2023; Published: May 17, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Waisen P, Cheng Z, Criley R. Effects of Pseudomonas chlororaphis strain AFS009 and Beauveria bassiana strain GHA against Plumeria rust in Hawaii. Plant Protect. Sci. 2023;59(2):202-207. doi: 10.17221/86/2022-PPS.
Download citation

References

  1. Ajouz S., Walker A.S., Fabre F., Leroux P., Nicot P.C., Bardin M. (2011): Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. BioControl, 56: 353-63. Go to original source...
  2. Bardas G.A., Lagopodi A.L., Kadoglidou K., Tzavella-Klonari K. (2009): Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biological Control, 49: 139-45. Go to original source...
  3. Chatterton S., Sutton J.C., Boland G.J. (2004): Timing Pseudomonas chlororaphis applications to control Pythium aphanidermatum, Pythium dissotocum, and root rot in hydroponic peppers. Biological Control, 30: 360-73. Go to original source...
  4. Chin-A-Woeng T.F., Bloemberg G.V., van der Bij A.J., van der Drift K.M., Schripsema J., Kroon B., Scheffer R.J., Keel C., Bakker P.A., Tichy H.V., de Bruijn F.J., Thomas-Oates J.E., Lugtenberg B.J. (1998): Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant-Microbe Interactions, 11: 1069-77. Go to original source...
  5. García-Nevárez G., Hidalgo-Jaminson E. (2019): Efficacy of indigenous and commercial Simplicillium and Lecanicillium strains for controlling Hemileia vastatrix. Revista Mexicana de Fitopatología, 37: 237-50. Go to original source...
  6. Han S.H., Lee S.J., Moon J.H., Park K.H., Yang K.Y., Cho B.H., Kim Y.K., Kim K.W., Lee M.C., Anderson A.J., Kim Y.C. (2006): GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. Tabaci in tobacco. Molecular Plant-Microbe Interactions, 19: 924-30. Go to original source... Go to PubMed...
  7. Huang R., Feng Z., Chi X., Sun X., Lu Y., Zhang B., Ge Y. (2018): Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiological Research, 215: 55-64. Go to original source... Go to PubMed...
  8. Jain R., Pandey A. (2016): A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiological Research, 190: 63-71. Go to original source... Go to PubMed...
  9. Kakishima M., Ji J.X., Zhao P., Wang Q., Li Y., McKenzie E.H.C. (2017): Geographic expansion of a rust fungus on Plumeria in Pacific and Asian countries. New Zealand Journal of Botany, 55: 178-86. Go to original source...
  10. Keswani C., Singh S.P., Singh H.B. (2013): Beauveriabassiana: Status, mode of action, applications and safety issues. Biotech Today, 3: 16-20. Go to original source...
  11. Kim M.S., Kim Y.C., Cho B.H. (2004): Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant Biology, 6: 105-8. Go to original source... Go to PubMed...
  12. Kim M.S., Cho S.M., Kang E.Y., Im Y.J., Hwangbo H., Kim Y.C., Cho B.H. (2008): Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Molecular Plant-Microbe Interactions, 21: 1643-53. Go to original source... Go to PubMed...
  13. Logrieco A., Moretti A., Ritieni A., Caiaffa M.F., Macchia L. (2002): Beauvericin: Chemistry, biology and significance. In: Upadhyay R. (ed.): Advances in Microbial Toxin Research and Its Biotechnological Exploitation. New York, USA, Kluwer Academic, 23-30. Go to original source...
  14. Miguelez-Sierra Y., Acebo-Guerrero Y., El Jaziri M., Bertin P., Hernández-Rodríguez A. (2019): Pseudomonas chlororaphis CP07 strain reduces disease severity caused by Phytophthora palmivora in genotypes of Theobroma cacao. European Journal of Plant Pathology, 155: 1133-43. Go to original source...
  15. Moricca S., Ragazzi A. (2008): Biological and integrated means to control rust diseases. In: Ciancio A., Mukerji K.G. (eds.): Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria. Berlin, Germany, Springer, 303-29. Go to original source...
  16. Nandi M., Selin C., Brawerman G., Fernando W.D., de Kievit T. (2017): Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biological Control, 108: 47-54. Go to original source...
  17. Nelson S. (2009): Plumeria rust. University of Hawaii at Manoa, cooperative extension service, Plant Disease PD-61. Available at https://www.ctahr.hawaii.edu/oc/freepubs/pdf/pd-61.pdf (accessed Aug 9, 2022).
  18. Ownley B.H., Gwinn K.D., Vega F.E. (2010): Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl, 55: 113-28. Go to original source...
  19. Radtke C.W., Cook S., Anderson A. (1994): Factors affecting the growth antagonism of Phanerochaete chrysosporium by bacteria isolated from soils. Applied Microbiology and Biotechnology, 41: 274-80. Go to original source...
  20. Sheroze A., Rashid A., Nasir M.A., Shakir A.S. (2002): Evaluation of some biocontrol agents/antagonistic microbes against pustule development of leaf rust of wheat caused by Puccinia recondita f. sp. Tritici Roberge ex. Desmaz. (Erikson and Henn.) D.M. Henderson. Plant Pathology Journal, 1: 51-3. Go to original source...
  21. Spencer M., Ryu C.M., Yang K.Y., Kim Y.C., Kloepper J.W., Anderson A. (2003): Induced defenses in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiological and Molecular Plant Pathology, 63: 27-34. Go to original source...
  22. Tagele S.B., Lee H.G., Kim S.W., Lee Y.S. (2019): Phenazine and 1-undecene producing Pseudomonas chlororaphis subsp. aurantiaca strain KNU17Pc1 for growth promotion and disease suppression in Korean maize cultivars. Journal of Microbiology and Biotechnology, 29: 66-78. Go to original source... Go to PubMed...
  23. Weeraratne T., Adikaram N. (2006): Biology of Plumeria leaf rust disease caused by Coleosporium plumeriae. Ceylon Journal of Science (Biological Sciences), 35: 157-62.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.