Plant Protect. Sci., 2024, 60(4):380-392 | DOI: 10.17221/54/2024-PPS

Transcriptomic analysis of melon with different Phelipanche aegyptiaca resistanceOriginal Paper

Yao Guo1,2, Juntao Yang2, Haojie Wang2, Junhua Li2, Bin Liu2, Haozhe Min2,3, Yongbing Zhang2*, Jiancai Mao2
1 Department of Horticulture, Faculty of Agriculture, Shihezi University, Shihezi, P. R. China
2 Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, P. R. China
3 Department of Horticulture, College of Horticulture and Forestry, Talimu University, Alaer, P. R. China

To elucidate the genetic factors contributing to melon resistance against Phelipanche aegyptiaca and comprehend the role of differentially resistant materials in responding to changes in P. aegyptiaca parasitisation, we investigated the P. aegyptiaca-resistant line K16 and the susceptible line K27. The parasitism rate of P. aegyptiaca was assessed at 25 days. Results revealed significant differences in parasitisation rates between K16 (15.35%) and K27 (34.2%). We compared inoculated K16 and K27 to their respective controls through transcriptome analysis and contrasted inoculated K16 with inoculated K27. Eight hundred eighteen genes exhibited differential expression across all comparisons. Gene ontology (GO) functional enrichment analysis revealed that differentially expressed genes were significantly enriched in nitrate transport and assimilation, cellular components, extracellular regions, binding and enzyme activities. KEGG pathway enrichment underscored the importance of phytohormone signaling, phenylpropanoid biosynthesis, linolenic acid and linoleic acid metabolism, cyanoamino acid metabolism and nitrogen metabolism in the interaction between melon and P. aegyptiaca. Nine genes potentially associated with P. aegyptiaca resistance were identified, encoding cytochrome protein P450, peroxidases, β-glucosidase, acyltransferase family proteins, histidine phosphotransfer protein, and D-type cyclins. This study aims to provide insights into the mechanism of P. aegyptiaca parasitism on melons and offers implications for breeding resistant varieties

Keywords: melon; Phelipanche aegyptiaca (Pers.); transcriptome; differentially expressed genes

Received: April 9, 2024; Revised: July 4, 2024; Accepted: July 24, 2024; Prepublished online: September 6, 2024; Published: October 14, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Guo Y, Yang J, Wang H, Li J, Liu B, Min H, et al.. Transcriptomic analysis of melon with different Phelipanche aegyptiaca resistance. Plant Protect. Sci. 2024;60(4):380-392. doi: 10.17221/54/2024-PPS.
Download citation

References

  1. Bai J., Wei Q., Shu J., Gan Z., Li B., Yan D., Huang Z., Guo Y., et al. (2020): Exploration of resistance to Phelipanche aegyptiaca in tomato. Pest Management Science, 76: 3806-3821. Go to original source... Go to PubMed...
  2. Bai J.R. (2020): Genetic and Regulatory Mechanism of Tomato against Parasitic Weed Broomrape.[Ph.D. Thesis.], Beijing: Chinese Academy of Agricultural Sciences.
  3. Cao X.L., Sun C., Zhao Q.Y., Yao Z.Q., Zhang L., Zhao S.F. (2020): Identification and evaluation for resistance of wild and cultivated melon germplasm to Phelipanche aegyptiaca. Acta Agriculturae Boreali-Occidentalis Sinica. 29: 1758-1766. (in Chinese)
  4. Clarke C.R., Park S., Tuosto R., Jia X., Yoder A., Van Mullekom J., Westwood J. (2020): Multiple immunity-related genes control susceptibility of Arabidopsis thaliana to the parasitic weed Phelipanche aegyptiaca. PeerJ, 8: 9268. Go to original source... Go to PubMed...
  5. Collins C., Maruthi N.M., Jahn C.E. (2015): CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. Journal of Experimental Botany, 66: 4595-4606. Go to original source... Go to PubMed...
  6. Cubero J.I., Hernández L. (1991): Breeding faba bean (Vicia faba L.) for resistance to Orobanche crenata Forsk. Options Méditerranéennes, 10: 51-57.
  7. Dong B.Z., Chen G.H., Zhao J., Jing L., Li J.F., Zhou, H.Y. (2016): Identification of sunflower varieties resistance to Orobanche cumana in inner Mongolia and Xinjing. Chinese Agricultural Science Bulletin, 32: 136-140. (in Chinese)
  8. Dong N.Q., Lin H.X. (2021): Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 63: 180-209. Go to original source... Go to PubMed...
  9. Galili S., Hershenhorn J., Smirnov E., Yoneyama K., Xie X., Amir-Segev O., Bellalou A., Dor E. (2021): Characterization of a Chickpea mutant resistant to Phelipanche aegyptiaca Pers. and Orobanche crenata Forsk. Plants (Basel), 10: 2552. Go to original source... Go to PubMed...
  10. Gomez-Roldan V., Fermas S., Brewer P.B., Puech-Pagès V., Dun E.A., Pillot J., Letisse F., Matusova R., et al. (2008): Strigolactone inhibition of shoot branching. Nature, 455: 189-194. Go to original source... Go to PubMed...
  11. Gutiérrez N., Palomino C., Satovic Z., Ruiz-Rodríguez M.D., Vitale S., Gutiérrez M.V., Rubiales D., Kharrat M., et al. (2013): QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Molecular Breeding, 32: 909-922. Go to original source...
  12. Ito S., Umehara M., Hanada A., Kitahata N., Hayase H., Yamaguchi S., Asami T., Lee Y. (2011): Effects of triazole derivatives on strigolactone levels and growth retardation in rice. PloS One, 6: 21723. Go to original source... Go to PubMed...
  13. Ito S., Umehara M., Hanada A., Yamaguchi S., Asami T. (2013): Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signaling & Behavior, 8: 24193. Go to original source... Go to PubMed...
  14. La Camera S., Gouzerh G., Dhondt S., Hoffmann L., Fritig B., Legrand M., Heitz T. (2004): Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews, 198: 267-284. Go to original source... Go to PubMed...
  15. Li C., Dong L., Durairaj J., Guan J.C., Yoshimura M., Quinodoz P., Horber R., Gaus K., et al. (2023): Maise resistance to witchweed through changes in strigolactone biosynthesis. Science, 379: 94-99. Go to original source... Go to PubMed...
  16. Longo A.M.G., Lo Monaco A., Mauromicale G. (2010): The effect of Phelipanche ramosa infection on the quality of tomato fruit. Weed Research, 50: 58-66. Go to original source...
  17. Ogawa S., Cui S., White A., Nelson D.C., Yoshida S., Shirasu K. (2022): Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants. Nature Communications, 13: 4653. Go to original source... Go to PubMed...
  18. Peng J.F. (2018): Identification of sources of resistance to Orobanche aegyptiaca in Xinjiang 31 muskmelon varieties and resistance mechanism of resistant varieties. [Master Thesis.] Shihezi: Shihezi University.
  19. Remans T., Nacry P., Pervent M., Girin T., Tillard P., Lepetit M., Gojon A. (2006): A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology, 140: 909-921. Go to original source... Go to PubMed...
  20. Rubiales D., Fernández-Aparicio M. (2012): Innovations in parasitic weeds management in legume crops. A review. Agronomy for Sustainable Development, 32: 433-449. Go to original source...
  21. Shi B., Zhao J. (2020): Recent progress on sunflower broomrape research in China. OCL, 27: 30. Go to original source...
  22. Sonbol F.M., Fornale S., Capellades M., Encina A., Tourino S., Torres J.L., Rovira P., Ruel K., et al. (2009): The maise ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology, 70: 283-296. Go to original source... Go to PubMed...
  23. Sun L., Zhang Q., Wu J., Zhang L., Jiao X., Zhang S., Zhang Z., Sun D., et al. (2014): Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice1. Plant Physiology (Bethesda), 165: 335-345. Go to original source... Go to PubMed...
  24. Velasco L., Pérez Vich B., Yassein A.A.M., Jan C.C., Fernández Martínez J.M. (2012): Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr.) in an interspecific cross between Helianthus annuus and Helianthus debilis subsp. tardiflorus. Plant Breeding, 131: 220-221. Go to original source...
  25. Wiseglass G., Pri-Tal O., Mosquna A. (2019): ABA signaling components in Phelipanche aegyptiaca. Scientific Reports, 9: 6476. Go to original source... Go to PubMed...
  26. Xu S., Li S., Bjorklund M., Xu S. (2022): Mitochondrial fragmentation and ROS signaling in wound response and repair. Cell Regeneration, 11: 38. Go to original source... Go to PubMed...
  27. Yaacoby T., Goldwasser Y., Paporish A., Rubin B. (2015): Germination of Phelipanche aegyptiaca and Cuscuta campestris seeds in composted farm manure. Crop Protection, 72: 76-82. Go to original source...
  28. Yao Z.Q. (2016): Study on the role of Strigolactones in resistance of muskmelon to broomrape and broomrape seed germination. [Ph.D Thesis.]. Shihezi: Shihezi University.
  29. Yao Z., Tian F., Cao X., Xu Y., Chen M., Xiang B., Zhao S. (2016): Global transcriptomic analysis reveals the mechanism of Phelipanche aegyptiaca seed germination. International Journal of Molecular Sciences, 17: 1139. Go to original source... Go to PubMed...
  30. Zhang H.,Wang H.J., Mao J.C., Li J.H., Zhai W.Q., Yi H.P., Hanan E., Yaakov T. (2019): Identification of resistance of 9 melon varieties to Orobanche aegyptiaca based on polyethylene bag hydroponics. Xinjiang Agricultural Sciences, 56): 1619-1625. (in Chinese)
  31. Zhang H., Li J.H., Wang H.J., Zhai W.Q., Yi H.P., Hanan E., Yaakov T. (2021a): Investigation of harms of Orobanche aegyptiaca to melon in Xinjiang and the chemical control methods. China Cucurbits and Vegetables, 34: 122-125. (in Chinese)
  32. Zhang J., Xu Y., Xie J., Zhuang H., Liu H., Shen G., Wu J. (2021b): Parasite dodder enables transfer of bidirectional systemic nitrogen signals between host plants. Plant Physiology, 185: 1395-1410. Go to original source... Go to PubMed...
  33. Zhang X.K., Yao Z.Q., Zhao S.F., Ding L.L., Du J. (2012): Distribution, hazards and risk assessment of Phelipanche aegyptiaca in Xinjiang. Plant Quarantine, 26: 31-33. (in Chinese)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.