Plant Protect. Sci., 2025, 61(1):44-55 | DOI: 10.17221/74/2024-PPS
Mapping and monitoring of weeds using unmanned aircraft systems and remote sensingReview
- 1 Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore, India
- Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, Coimbatore, India
- 3 Department of Farm Machinery and Power Engineering, Tamil Nadu Agricultural University, Coimbatore, India
- 4 ICAR - Central Institute for Cotton Research - Regional Station, Coimbatore, India
- 5 Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore, India
Effective weed management relies on frequent field monitoring, which is difficult to perform in vast areas. Integrating red-green-blue, thermal, hyperspectral, and multispectral sensors with unmanned aircraft systems and artificial intelligence ensures better results in managing the weed menace. Since India depends largely on agriculture, it is still a long way from implementing more advanced weed management methods. Mapping and surveillance of weeds in croplands by employing remote sensing will lead to varied herbicide application rates, thus reducing its overuse. This study reviews the practical application of remote sensing methods and unmanned aircraft systems in weed mapping
Keywords: UAS; weed mapping; artificial intelligence; remote sensing; sensors
Received: May 7, 2024; Revised: June 17, 2024; Accepted: June 18, 2024; Prepublished online: September 4, 2024; Published: January 15, 2025 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ahmed M., Yasmin J., Mo C., Lee H., Kim M.S., Hong S.J, Cho B.K. (2016): Outdoor applications of hyperspectral imaging technology for monitoring agricultural crops: A Review. Journal of Biosystems Engineering, 41: 396-407.
Go to original source...
- Ballester C., Zarco-Tejada P.J., Nicolás E., Alarcón J.J., Fereres E., Intrigliolo D.S., Gonzalez-Dugo V. (2018): Evaluating the performance of xanthophyll, chlorophyll and structure-sensitive spectral indices to detect water stress in five fruit tree species. Precision Agriculture, 19: 178-193.
Go to original source...
- Barber D.B., Redding J.D., McLain T.W., Beard R.W., Taylor C.N. (2006): Vision-based target geo-location using a fixed-wing miniature air vehicle. Journal of Intelligent and Robotic Systems, 47: 361-382.
Go to original source...
- Bauer M.V., Marx C., Bauer F.V., Flury D.M., Ripken T., Streit B. (2020): Thermal weed control technologies for conservation agriculture - A review. Weed Research, 60: 241-250.
Go to original source...
- Berni J.A., Zarco-Tejada P.J., Suárez L., Fereres E. (2009): Thermal and narrowband multispectral remote sensing, IEEE Ttransactions on Geoscience and Remote Sensing, 47: 722-738.
Go to original source...
- Borengasser M., Hungate W.S., Watkins R. (2007): Hyperspectral Remote Sensing: Principles and Applications. 1st Edition. Boca Raton, CRC Press.
Go to original source...
- Che'Ya N.N., Dunwoody E., Gupta M. (2021): Assessment of weed classification using hyperspectral reflectance and optimal multispectral UAV imagery. Agronomy, 11: 1435.
Go to original source...
- Chen Y.R., Chao K., Kim M.S. (2002): Machine vision technology for agricultural applications. Computers and Electronics in Agriculture, 36: 173-191.
Go to original source...
- Collobert R., Weston J., Bottou L., Karlen M., Kavukcuoglu K., Kuksa P. (2011): Natural language processing (almost) from scratch. Journal of Machine Learning Research,
- 12: 2493-2537.
- Colomina I., Molina P. (2014): Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97.
Go to original source...
- Darvishpoor S, Roshanian J., Raissi A., Hassanalian M. (2020): Configurations, flight mechanisms, and applications of unmanned aerial systems: A review. Progress in Aerospace Sciences, 121: 1-59.
Go to original source...
- Delavarpour N., Koparan C., Nowatzki J., Bajwa S., Sun X. (2021): A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13: 1204.
Go to original source...
- Denisow-Pietrzyk M., Pietrzyk Ł., Denisow B. (2019): Asteraceae species as potential environmental factors of allergy. Environmental Science and Pollution Research, 26: 6290-6300.
Go to original source...
Go to PubMed...
- Eddy P., Smith A., Hill B., Peddle D., Coburn C., Blackshaw R. (2008): Hybrid segmentation-artificial neural network classification of high resolution hyperspectral imagery for site-specific herbicide management in agriculture. Photogrammetric Engineering and Remote Sensing, 74: 1249-1257.
Go to original source...
- Eddy P., Smith A., Hill B., Peddle D., Coburn C., Blackshaw R. (2014): Weed and crop discrimination using hyperspectral image data and reduced bandsets. Canadian Journal of Remote Sensing, 39: 481-490.
Go to original source...
- Eide A., Koparan C., Zhang Y., Ostlie M., Howatt K., Sun X. (2021): UAV-assisted thermal infrared and multispectral imaging of weed canopies for glyphosate resistance detection. Remote Sensing, 13: 4606.
Go to original source...
- Espejo-Garcia B., Mylonas N., Athanasakos L., Fountas S., Vasilakoglou I. (2020): Towards weeds identification assistance through transfer learning. Computers and Electronics in Agriculture, 171: 105306.
Go to original source...
- Esposito M., Crimaldi M., Cirillo V., Sarghini F., Maggio A. (2021): Drone and sensor technology for sustainable weed management: A review. Chemical and Biological Technologies in Agriculture, 8: 1-11.
Go to original source...
- Etienne A., Saraswat D. (2019): Machine learning approaches to automate weed detection by UAV based sensors. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV. SPIE, 11008: 202-215.
Go to original source...
- Farooq A., Hu J., Jia X. (2018). Weed classification in hyperspectral remote sensing images via deep convolutional neural network. In: 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, July 22-27, 2018: 4.
Go to original source...
- Feyaerts F., Van Gool L. (2001): Multispectral vision system for weed detection. Pattern Recognition Letters, 22: 667-674.
Go to original source...
- Ghazali M.H.M., Azmin A., Rahiman W. (2022): Drone implementation in precision agriculture - A Survey. International Journal of Emerging Technology and Advanced Engineering, 12: 67-77.
Go to original source...
- Goel P.K., Prasher S.O., Landry J.A., Patel R.M., Viau A.A. (2003): Hyperspectral image classification to detect weed infestations and nitrogen status in corn. Transactions of the ASAE, 46: 539.
Go to original source...
- Gomez-Candon D., Virlet N., Labbé S., Jolivot A., Regnard J.L. (2016): Field phenotyping of water stress at tree scale by UAV-sensed imagery: new insights for thermal acquisition and calibration. Precision Agriculture, 17: 786-800.
Go to original source...
- Graves A., Mohamed A.R., Hinton G. (2013): Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, British Columbia, Canada, May 26-31, 2013: 5.
Go to original source...
- Hafeez A., Husain M.A., Singh S., Chauhan A., Khan M.T., Kumar N., Chauhan A., Soni S. (2022): Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information Processing in Agriculture, 10: 192-203.
Go to original source...
- Hardin P.J., Jenson R.R. (2011): Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. GIScience and Remote Sensing, 48: 99-111.
Go to original source...
- Hardin P.J., Lulla V., Jensen R.R., Jensen J.R. (2019): Small unmanned aerial systems (sUAS) for environmental remote sensing: Challenges and opportunities revisited. GIScience and Remote Sensing, 56: 309-322.
Go to original source...
- Hassanalian M., Abdelkefi A. (2017): Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91: 99-131.
Go to original source...
- Hassler S.C., Baysal-Gurel F. (2019): Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy, 9: 618.
Go to original source...
- He K.S., Rocchini D., Neteler M., Nagendra H. (2011): Benefits of hyperspectral remote sensing for tracking plant invasions. Diversity and Distributions, 17: 381-392.
Go to original source...
- Hestir E.L., Khanna S., Andrew M.E., Santos M.J., Viers J.H., Greenberg J.A., Rajapakse S.S., Ustin S.L. (2008): Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112: 4034-4047.
Go to original source...
- Hu C., Sapkota B.B., Thomasson J.A., Bagavathiannan M.V. (2021a): Influence of image quality and light consistency on the performance of convolutional neural networks for weed mapping. Remote Sensing, 13: 2140.
Go to original source...
- Hu C., Thomasson J.A., Bagavathiannan M.V. (2021b): A powerful image synthesis and semi-supervised learning pipeline for site-specific weed detection. Computers and Electronics in Agriculture, 190: 106423.
Go to original source...
- Huang Y., Lee M.A., Thomson S.J., Reddy K.N. (2016): Ground-based hyperspectral remote sensing for weed management in crop production. International Journal of Agricultural and Biological Engineering, 9: 98-109.
- Huang Y., Reddy K. (2015): Unmanned aerial vehicles: a unique platform for low-altitude remote sensing for crop management. In: Rao A.N., Yaduraju N.T (eds): Proceedings of the Plenary and Lead Papers of the 25th Asian-Pacific Weed Science Society Conference, Hyderabad, India, October 13-15, 2015: 8.
- Jack R., Mohidin H., Tamrin K.F., Banchit A., Khan M.Y.M.A., Narawi A., Dollah N. (2019): Soil pH Mapping of Pineapple Crop: A Feasibility Study using Aerial Photo. In: International Conference on Computer and Drone Applications (IConDA), Sarawak, Malaysia, December 19-21, 2019: 4.
Go to original source...
- Jin X., Bagavathiannan M., McCullough P.E., Chen Y., Yu J. (2022): A deep learning-based method for classification, detection, and localisation of weeds in turfgrass. Pest Management Science, 78: 4809-4821.
Go to original source...
Go to PubMed...
- Jordan M.I., Mitchell T.M. (2015): Machine learning: Trends, perspectives, and prospects. Science, 349: 255-260.
Go to original source...
Go to PubMed...
- Kaya S., Goraj Z. (2020): The use of drones in agricultural production. International Journal of Innovative Approaches in Agricultural Research, 4: 166-176.
Go to original source...
- Kim M.S., McMurtrey J.E., Mulchi C.L., Daughtry C.S., Chappelle E.W., Chen Y.R. (2001): Steady-state multispectral fluorescence imaging system for plant leaves. Applied Optics, 40: 157-166.
Go to original source...
Go to PubMed...
- Kingra P., Majumder D., Singh S.P. (2016): Application of remote sensing and GIS in agriculture and natural resource management under changing climatic conditions. Agricultural Research Journal, 53: 295-302.
Go to original source...
- Krizhevsky A., Sutskever I., Hinton G.E. (2017): ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60: 84-90.
Go to original source...
- Lambert J., Hicks H., Childs D., Freckleton R. (2018): Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with Alopecurus myosuroides. Weed Research, 58: 35-45.
Go to original source...
Go to PubMed...
- Lawrence R.L., Wood S.D., Sheley R.L. (2006): Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest). Remote Sensing of Environment, 100: 356-362.
Go to original source...
- Li Y., Al-Sarayreh M., Irie K., Hackell D., Bourdot G., Reis M.M., Ghamkhar K. (2021): Identification of weeds based on hyperspectral imaging and machine learning. Frontiers in Plant Science, 11: 611-622.
Go to original source...
Go to PubMed...
- Liu B., Li R., Li H., You G., Yan S., Tong Q. (2019): Crop/Weed discrimination using a field imaging spectrometer system. Sensors, 19: 5154.
Go to original source...
Go to PubMed...
- Lopez-Granados F. (2011): Weed detection for site-specific weed management: mapping and real-time approaches. Weed Research, 51: 1-11.
Go to original source...
- Louargant M., Jones G., Faroux R., Paoli J.N., Maillot T., Gée C., Villette S. (2018): Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information. Remote Sensing, 10: 761.
Go to original source...
- Lu B., Dao P.D., Liu J., He Y., Shang J. (2020): Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing, 12: 2659.
Go to original source...
- Madsen L.S., Mathiassen S.K., Dyrmann M., Laursen M.S., Paz L.C., Jørgensen R.N. (2020): Open plant phenotype database of common weeds in Denmark. Remote Sensing, 12: 1246.
Go to original source...
- Mancini A., Frontoni E., Zingaretti P. (2019): Satellite and UAV data for precision agriculture applications. In: International Conference on Unmanned Aircraft Systems (ICUAS), Georgia, USA, June 11-14, 2019: 7.
Go to original source...
- Manfreda S., McCabe M.F., Miller P.E., Lucas R., Pajuelo Madrigal V., Mallinis G., Ben Dor E., Helman D., et al. (2018): On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10: 641.
Go to original source...
- Mink R., Linn A.I., Santel H.J., Gerhards R. (2020): Sensor-based evaluation of maise (Zea mays) and weed response to post-emergence herbicide applications of Isoxaflutole and Cyprosulfamide applied as crop seed treatment or herbicide mixing partner. Pest Management Science, 76: 1856-1865.
Go to original source...
Go to PubMed...
- Naresh R.K., Chandra M.S., Vivek, Shivangi, Charankumar G.R., Chaitanya J., Alam M.S., Singh P.K., et al. (2020): The Prospect of artificial intelligence (AI) in precision agriculture for farming systems productivity in sub-tropical India: A Review. Current Journal of Applied Science and Technology, 39: 96-110.
Go to original source...
- Nelson S.A., Khorram S. (2018): Image Processing and Data Analysis with ERDAS IMAGINE. CRC Press.
Go to original source...
- Oliveira M.C, Osipitan O.A, Begcy K., Werle R. (2020): Cover crops, hormones and herbicides: Priming an integrated weed management strategy. Plant Science, 301: 110550.
Go to original source...
Go to PubMed...
- Osorio,K., Puerto A., Pedraza C., Jamaica D., Rodríguez L. (2020): A deep learning approach for weed detection in lettuce crops using multispectral images. AgriEngineering, 2: 471-488.
Go to original source...
- Pahikkala T., Kari K., Mattila H., Lepisto A., Teuhola J., Nevalainen O.S., Tyystjärvi E. (2015): Classification of plant species from images of overlapping leaves. Computers and Electronics in Agriculture, 118: 186-192.
Go to original source...
- Panagiotou P., Yakinthos K. (2020): Aerodynamic efficiency and performance enhancement of fixed-wing UAVs. Aerospace Science and Technology, 99: 10-23.
Go to original source...
- Patel H.M. (2023): The transformative role of artificial intelligence in modern agriculture. Review of Artificial Intelligence in Education, 4: 1-8.
Go to original source...
- Pazhanivelan S., Latha K.R., Ramachandiran K. (2015): Effect of integrated weed management practices on weed growth, yield attributes and yield of blackgram. Madras Agricultural Journal, 102: 137-139.
- Pazhanivelan S., Kumaraperumal R., Shanmugapriya P., Sudarmanian N.S., Sivamurugan A.P., Satheesh S. (2023): Quantification of biophysical parameters and economic yield in cotton and rice using drone technology. Agriculture, 13: 1668.
Go to original source...
- Pignatti S., Casa R., Harfouche A., Huang W., Palombo A., Pascucci S. (2019): Maise crop and weeds species detection by using UAV VNIR hyperspectral data. In: International Geoscience and Remote Sensing Symposium, Yokohama, Japan, July 28 - August 2, 2019: 4.
Go to original source...
- Prey L., Von Bloh M., Schmidhalter U. (2018): Evaluating RGB imaging and multispectral active and hyperspectral passive sensing for assessing early plant vigor in winter wheat. Sensors, 18: 2931.
Go to original source...
Go to PubMed...
- Radoglou-Grammatikis P., Sarigiannidis P., Lagkas T. (2020): A compilation of UAV applications for precision agriculture. Computer Networks, 172: 107148.
Go to original source...
- Rahkonen J., Jokela H. (2003): Infrared radiometry for measuring plant leaf temperature during thermal weed control treatment. Biosystems Engineering, 86: 257-266.
Go to original source...
- Reckleben Y. (2014): Sensoren für die Stickstoffdüngung-Erfahrungen in 12 Jahren praktischem Einsatz. Journal of Cultivated Plants, 66: 42-47. (in German)
- Rosell-Polo J.R., Cheein F.A., Gregorio E., Andújar D., Puigdomènech L., Masip J., Escolà A. (2015): Advances in structured light sensors applications in precision agriculture and livestock farming. Advances in Agronomy, 133: 71-112.
Go to original source...
- Roslim M.H.M., Juraimi A.S., Che'Ya N.N., Sulaiman N., Manaf M.N.H.A., Ramli Z., Motmainna M. (2021): Using remote sensing and an unmanned aerial system for weed management in agricultural crops: A review. Agronomy, 11: 1809.
Go to original source...
- Saeed A.S., Younes A.B., Cai C., Cai G. (2018): A survey of hybrid unmanned aerial vehicles. Progress in Aerospace Sciences, 98: 91-105.
Go to original source...
- Sagan V., Maimaitijiang M., Sidike P., Eblimit K., Peterson K.T., Hartling S., Esposito F., Khanal K., et al. (2019): UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras. Remote Sensing, 11: 330.
Go to original source...
- Sathishkumar A., Srinivasan G., Subramanian E., Rajesh P. (2022): Weed Management in Cotton: A Review. Agricultural Reviews, 43: 1-10.
Go to original source...
- Schmidhuber J. (2015): Deep learning in neural networks: An overview. Neural networks, 61: 85-117.
Go to original source...
Go to PubMed...
- Sharma M., Hema N. (2021): Comparison of agricultural drones and challenges in implementation: A Review. In: 7th International conference on signal processing and communication, November 25-27, 2021, Noida: 26-30.
Go to original source...
- Sharma S., Kooner R., Arora R. (2017): Insect pests and crop losses. In: Breeding Insect Resistant Crops for Sustainable Agriculture, Springer: 45-66.
Go to original source...
- Singh V, Bagavathiannan M., Chauhan B., Singh S. (2019): Evaluation of current policies on the use of unmanned aerial vehicles in Indian agriculture. Current Science, 117: 25-29.
Go to original source...
- Singh V., Rana A., Bishop M., Filippi A.M., Cope D., Rajan N., Bagavathiannan M. (2020): Unmanned aircraft systems for precision weed detection and management: Prospects and challenges. Advances in Agronomy, 159: 93-134.
Go to original source...
- Smith A.M., Blackshaw R.E. (2003): Weed-crop discrimination using remote sensing: a detached leaf experiment. Weed Technology, 17: 811-820.
Go to original source...
- Strecha C., Kung O., Fua P. (2012): Automatic mapping from ultra-light UAV imagery. In: EuroCOW, Barceloa, Spain, December 8-10, 2012: 4.
- Stroppiana D., Villa P., Sona G., Ronchetti G., Candiani G., Pepe M., Busetto L., Migliazzi M., et al. (2018): Early season weed mapping in rice crops using multispectral UAV data. International Journal of Remote Sensing,
Go to original source...
- 39: 5432-5452.
- Su J., Yi D., Su B., Mi Z., Liu C., Hu X., Xu X., Guo L., et al. (2020): Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring. IEEE Transactions on Industrial Informatics, 17: 2242-2249.
Go to original source...
- Sulaiman N., Che'Ya N.N., Mohd Roslim M.H., Juraimi A.S., Mohd Noor N., Fazlil Ilahi W.F. (2022): The application of hyperspectral remote sensing imagery (HRSI) for weed detection analysis in rice fields: A review. Applied Sciences, 12: 2570.
Go to original source...
- Thorp K., Tian L. (2004): A review on remote sensing of weeds in agriculture. Precision Agriculture, 5: 477-508.
Go to original source...
- Underwood E., Ustin S., DiPietro D. (2003): Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment, 86: 150-161.
Go to original source...
- Vadivambal R., Jayas D.S. (2011): Applications of thermal imaging in agriculture and food industry - a review. Food and bioprocess technology, 4: 186-199.
Go to original source...
- Velusamy P., Rajendran S., Mahendran R., Naseer S., Shafiq M., Choi J. (2022): Unmanned aerial vehicles (UAV) in precision agriculture: Applications and challenges. Energies, 5: 1-19.
Go to original source...
- Xiang H., Tian L. (2011): Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108: 174-190.
Go to original source...
- Xu B., Meng R., Chen G., Liang L., Lv Z., Zhou L., Sun R., Zhao F., et al. (2023): Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements. Pest Management Science, 79: 2591-2602.
Go to original source...
Go to PubMed...
- Xue J., Su B. (2017): Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017: 1-17.
Go to original source...
- Yang C., Everitt J.H. (2010): Mapping three invasive weeds using airborne hyperspectral imagery. Ecological Informatics, 5: 429-439.
Go to original source...
- Ye X., Sakai K., Asada S.I., Sasao A. (2007): Use of airborne multispectral imagery to discriminate and map weed infestations in a citrus orchard. Weed Biology and Management, 7: 23-30.
Go to original source...
- Zhang W., Miao Z., Li N., He C., Sun T. (2022): Review of current robotic approaches for precision weed management. Current Robotics Reports, 3: 139-151.
Go to original source...
Go to PubMed...
- Zhang Y., Gao J., Cen H., Lu Y., Yu X., He Y., Pieters J.G. (2019): Automated spectral feature extraction from hyperspectral images to differentiate weedy rice and barnyard grass from a rice crop. Computers and Electronics in Agriculture, 159: 42-49.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.