Plant Protect. Sci., 2025, 61(2):172-182 | DOI: 10.17221/75/2024-PPS

Phytochemical profile of stem extract of Carthamus oxycantha and identification of herbicidal and antimicrobial constituentsOriginal Paper

Muhammad Rafiq1,2, Amna Shoaib3, Arshad Javaid3, Shagufta Perveen3, Hafiz Umair Asdullah4, Chunsong Cheng1,2
1 Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, P.R. China
2 Jiangxi Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangx Province and Chinese Academy of Sciences, Jiujiang, P.R. China
3 Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
4 Jiangxi Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangx Province and School of Horticulture, Anhui Agricultural University, Hefei, P.R. China

The present study was carried out to enlist herbicidal and antimicrobial compounds in the methanolic stem extract of Carthamus oxycantha, a problematic weed of Asteraceae. Methanolic stem extract was subjected to GC-MS analysis that revealed the presence of 150 constituents in the extract. The most abundant compound was Niacin (45.375%) followed by D-ribofuranose, 5-deoxy-5-(methylsulfinyl)-1,2,3-tris-O-(trimethylsilyl)- (14.528%); 9,12-octadecadienoic acid (Z,Z)-, methyl ester (4.951%); γ-tocopherol (4.638%); hexacosane (4.148%); 3-phenyllactic acid, 2TMS derivative  (2.675%); 13-retinoic acid, (Z)-, TMS derivative (2.461%); 2,2,5,5-tetramethyl-4-ethyl-3-imidazoline-1-oxyl (2.276%); octadecanoic acid (1.851%); 2-deoxy-1,3,4,5-tetrakis-O-(trimethylsilyl); pentitol (1.757%); 3,5,5-trimethyl-4-(3-((trimethylsilyl)oxy)butyl)cyclohex-2-enone (1.505%); methyl 9.cis.,11.trans.t,13.trans.-octadecatrienoate (1.136%); and benzoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl ester (1.044%). Peak areas for the rest of the compounds were below 1%. Among the identified compounds, 9,12-octadecadienoic acid (Z,Z)-, methyl ester (3), hexacosane (5), 9,12-octadecadienoic acid (Z,Z)- (28), tetradecanoic acid, methyl ester (29), hexadecanoic acid, methyl ester (30), γ-sitosterol (33), 9,12,15-octadecatrienoic acid, (Z,Z,Z)- (48), dodecanoic acid (68) and eicosane (128) are known to possess antimicrobial activities. Compound 28 is also known for its herbicidal activity as a binary mixture with xanthoxyline. This study concludes that the stem extract of C. oxycantha primarily comprises antifungal and antibacterial compounds.

Keywords: antimicrobial; bioactive compounds; secondary metabolites; GC-MS; herbicidal; stem extract

Received: May 7, 2024; Revised: February 9, 2025; Accepted: February 10, 2025; Prepublished online: March 20, 2025; Published: April 4, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Rafiq M, Shoaib A, Javaid A, Perveen S, Asdullah HU, Cheng C. Phytochemical profile of stem extract of Carthamus oxycantha and identification of herbicidal and antimicrobial constituents. Plant Protect. Sci. 2025;61(2):172-182. doi: 10.17221/75/2024-PPS.
Download citation

References

  1. Afridi R.A., Khan M.A. (2015): Comparative effect of water extract of Parthenium hysterophorus, Datura alba, Phragmites australis and Oryza sativa on weeds and wheat. Sains Malaysiana, 44: 693-699. Go to original source...
  2. Agoramoorthy G., Chandrasekaran M., Venkatesalu V., Hsu M.J. (2007): Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Brazalian Journal of Microbiology, 38: 739-742. Go to original source...
  3. Ahmad S.S., Wahid A., Bukhsh E., Ahmad S., Kakar S.R. (2009): Antihyperlidemic properties of Carthamus oxyacantha. Pakistan Journal of Science, 61: 116-121.
  4. Ahsan T., Chen J., Zhao X., Irfan M., Wu Y. (2017): Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express, 7: 54-63. Go to original source... Go to PubMed...
  5. Aslam N., Akbar M., Andolfi A. (2024): Allelopathic interactions of Carthamus oxyacantha, Macrophomina phaseolina and maize: Implications for the use of Carthamus oxyacantha as a natural disease management strategy in maize. Plos One, 19: e0307082. Go to original source... Go to PubMed...
  6. Baban M.M., Ahmad S.A., Abu-Odeh A.M., Baban M., Talib W.H. (2023): Anticancer, immunomodulatory, and phytochemical screening of Carthamus oxyacantha M. Bieb growing in the North of Iraq. Plants, 131: 42. Go to original source... Go to PubMed...
  7. Banaras S., Javaid A. (2015): Management of Macrophomina phaseolina by extracts of Launea nudicaulis. Mycopath, 13: 7-11.
  8. Banaras S., Javaid A., Shoaib A., Ahmed E. (2017): Antifungal activity of Cirsium arvense extracts against a phytopathogenic fungus Macrophomina phaseolina. Planta Daninha, 35: e017162738. Go to original source...
  9. Banaras S., Javaid A., Khan I.H. (2020): Potential antifungal constituents of Sonchus oleraceous against Macrophomina phaseolina. International Journal of Agriculture and Biology, 24: 1376-1382.
  10. Banaras S.A. Javaid, Khan I.H. (2021): Bioassays guided fractionation of Ageratum conyzoides extract for the identification of natural antifungal compounds against Macrophomina phaseolina. International Journal of Agriculture and Biology, 25: 761-767. Go to original source...
  11. Bashir T., Anum W., AliI A., Gaffar L., Raza M.U. (2018): Allelopathic effects of perennial sow thistle (Sonchus arvensis L.) on germination and seedling growth of maize (Zea mays L.). Allelopathy Journal, 43: 105-116. Go to original source...
  12. Bashir U., Javaid A., Bajwa R. (2017): Effects of aqueous extracts of sunflower (Helianthus annuus L.) on germination and seedling growth of the selected wheat (Tritichum aestivum L.) varieties. Bangladesh Journal of Botany, 46: 1323-1332.
  13. Batool R., Nazar, A., Adnan M., Khursheed Z., Mohsin F., Hussain W. (2025): Cross culture comparison in ethno-pharmacological uses of plants between two geographical regions of Northwest Pakistan. Ethnobotany Research and Applications, 30: 1-21. Go to original source...
  14. Benvenuti S. (2004): Weed dynamics in the Mediterranean urban ecosystem: ecology, biodiversity and management. Weed Research, 5: 341-354. Go to original source...
  15. Benvenuti S., Cioni P.L., Flamini G., Pardossi A. (2017): Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57: 342-353. Go to original source...
  16. Canli K., Şimşek Ö., Yetgin A., Altuner E.M. (2017): Determination of the chemical composition and antimicrobial activity of Frankenia hirsuta. Bangladesh Journal of Pharmacology, 12: 463-469. Go to original source...
  17. Chandrasekaran M., Kannathasan K., Venkatesalu V. (2007): Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Zeitschrift für Naturforschung C, 63: 331-336. Go to original source... Go to PubMed...
  18. Chandrasekaran M., Senthilkumar A., Venkatesalu V. (2011): Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. European review for medical Medical and pharmacological Pharmacological Sciences, 15: 775-780.
  19. Cheng F., Cheng Z. (2015): Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontier in Plant Sciences, 6: 1020. Go to original source... Go to PubMed...
  20. Chon S.U., Nelson C.J. (2010): Allelopathy in Compositae plants. A review. Agronomy for Sustainable Development, 30: 349-358. Go to original source...
  21. Chotsaeng N., Laosinwattana C., Charoenying P. (2017): Herbicidal activities of some allelochemicals and their synergistic behaviors toward Amaranthus tricolor L. Molecules, 22: 1841. Go to original source... Go to PubMed...
  22. Dilshad M., Riaz N., Saleem M., Shafiq N., Ashraf M., Ismail T. (2016): New lipoxygenase and cholinesterase inhibitory sphingolipids from Carthamus oxyacantha, Natural Product Research, 30: 1787-1795. Go to original source... Go to PubMed...
  23. Erida G., Ichsan C.N., Syamsuddin T., Khan I.H., Javaid A. (2023): Potential of secondary metabolites of Ageratum conyzoides L. in weed management: A review. Allelopathy Journal, 58: 23-40. Go to original source...
  24. Ferdosi M.F.H., Javaid A., Khan I.H., Munir A. (2021a): Bioactive components in methanolic flower extract of Ageratum conyzoides. Pakistan Journal of Weed Science Research, 27: 181-190. Go to original source...
  25. Ferdosi M.F.H., Khan I.H., Javaid A. (2021b): GC-MS examination of methanolic extract of Cirsium arvense flower. Pakistan Journal of Weed Science Research, 27: 173-180. Go to original source...
  26. Garg A., Sharma A., Krishnamoorthy P., Garg J., Virmani D., Sharma T. (2017): Role of niacin in current clinical practice: a systematic review. American Journal of Medicine, 130: 173-178. Go to original source... Go to PubMed...
  27. Gomaa N.H., Hassan M.O., Fahmy G.M., González L., Hammouda O., Atteya A.M. (2014): Allelopathic effects of Sonchus oleraceus L. on the germination and seedling growth of crop and weed species. Acta Botanica Brasilica, 28: 408-416. Go to original source...
  28. Hasan M., Ahmad-Hamdani M.S., Rosli, A.M., Hamdan, H. (2021): Bioherbicides: An eco-friendly tool for sustainable weed management. Plants, 10: 1212. Go to original source... Go to PubMed...
  29. Hesammi E. (2012): Allelopathic effects of Carthamus oxycantha and Chenopodium mural on germination and initial growth of Phasaeolous vulgaris. International Journal of Farming and Allied Sciences, 1: 54-56.
  30. Javaid N., Shah M.H., Khan I.H., Javaid A., Waleed S.M. (2020): Herbicidal activity of Ageratum conyzoides against parthenium weed. Pakistan Journal of Weed Science Research, 26: 137-146. Go to original source...
  31. Karthikeyan S.C., Velmurugan S., Donio M.B.S., Michaelbabu M., Citarasu T. (2014): Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Annals of Clinical Microbiology and Antimicrobials, 13: 332. Go to original source... Go to PubMed...
  32. Kew (2018): The Plant List: Compositae. Royal Botanic Gardens Kew and Missouri Botanic Garden. Available at: http://www.theplantlist.org/1.1/browse/A/Compositae/ (accessed November 8, 2018).
  33. Koc S., Isgor B.S., Isgor Y.G., Shomali Moghaddam N., Yildirim O. (2015): The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharmaceutical Biology, 53: 746-751. Go to original source... Go to PubMed...
  34. Kong C.H., Xuan T.D., Khanh T.D., Tran H.D. Trung, N.T. (2019): Allelochemicals and signaling chemicals in plants. Molecules, 24: 2737 Go to original source... Go to PubMed...
  35. La Iacona M., Lombardo S., Mauromicale G., Scavo A., Pandino G. (2024): Allelopathic activity of three wild Mediterranean Asteraceae: Silybum marianum, Cynara cardunculus var. sylvestris, Galactites tomentosus. Agronomy, 14: 575. Go to original source...
  36. Mahé I., Chauvel B., Colbach N., Cordeau S., Gfeller A., Reiss A., Moreau D. (2022): Deciphering field-based evidences for crop allelopathy in weed regulation. A review. Agronomy for Sustainable Development, 42: 50. Go to original source...
  37. Murray M.F. (2003): Nicotinamide: An oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clinical Infectious Diseases, 36: 453-460. Go to original source... Go to PubMed...
  38. Naeem M.1., Cheema Z.A., Ihsan M.Z., Hussain Y., Mazari A., Abbas H.T. (2018): Allelopathic effects of different plant water extracts on yield and weeds of wheat. Planta Daninha, 36: e018177840. Go to original source...
  39. Narang R., Narasimhan B., Sharma S., Sriram D., Yogeeswari P., Clercq E.D. (2012): Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Medicinal Chemistry Research, 21: 1557-1576. Go to original source...
  40. Nishanthini A., Mohan V.R., Jeeva S. (2014): Phytochemical, FT-IR, and GC-MS analysis of stem and leaf of Tiliacora acuminata (lan.) Hook F & Thomas (Menispermaceae). International Journal of Pharmaceutical Sciences and Research, 5: 3977-3986.
  41. Pinto M.E.A., Araújo S.G., Morais M.I., Sá N.P., Lima C.M., Rosa C.A., Siqueira E.P., Johann S., et al. (2017): Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais da Academia Brasileira de Ciencias, 89: 1671-1681. Go to original source... Go to PubMed...
  42. Rafiq M., Javaid A., Shoaib A. (2017): Possible antifungal and antibacterial constituents in inflorescence extract of Carthamus oxycantha. Mycopath, 15: 89-95.
  43. Rafiq M., Javaid A., Kanwal A., Anwar A., Khan I.H., Kanwal Q., Cheng C. (2024a): GC-MS analysis and antifungal potential of flower extract of Acacia nilotica subsp. Indica against Macrophomina phaseolina. Microbial Pathogenesis, 194: 106819. Go to original source... Go to PubMed...
  44. Rafiq M., Shoaib A., Javaid A., Parveen S., Hassan M.A., Nawaz H.H., Cheng C. (2024b): Application of Asteraceae biomass and biofertilizers to improve potato crop health by controlling black scurf disease. Frontiers in Plant Science, 15: 1437702. Go to original source... Go to PubMed...
  45. Rukaiyat M., Garba S., Labaran S. (2015): Antimicrobial activities of hexacosane isolated from Sanseveria liberica (Gerome and Labroy) plant. Advancement in Medicinal Plant Research, 3: 120-125.
  46. Sati A., Sati S.C., Sati, N., Sati, O.P. (2017): Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits. Natural Product Research, 31: 713-717. Go to original source... Go to PubMed...
  47. Siddiqui M.H., Khalid S., Shehzad M., Shah Z.A. (2018): Parthenium hysterophorus herbage mulching: a potential source of weeds control in soybean (Glycine max). Planta Daninha, 36: e01817099. Go to original source...
  48. Singh B., Singh S. (2003): Antimicrobial activity of terpenoids from Trichodesma amplexicaule Roth. Phytotherapy Research, 17: 814-816. Go to original source... Go to PubMed...
  49. Siyar S., Majeed A., Muhammad Z., Ullah R., Islam S.I. (2018): Allelopathic management of some noxious weeds by the aqueous extracts of Parthenium hysterophorus and Carthamus oxyacantha. Polish Journal of Natural Sciences, 33: 223-231.
  50. Synowiec A., Halecki W., Wielgusz K., Byczyńska M., Czaplicki S. (2017): Effect of fatty acid methyl esters on the herbicidal effect of essential oils on corn and weeds. Weed Technology, 31: 301-309. Go to original source...
  51. Tanasa M.V., Negreanu-Pirjol T., Olariu L., Negreanu-Pirjol B.S., Lepadatu A.C., Anghel L., Rosoiu N. (2025): Bioactive compounds from vegetal organs of Taraxacum species (Dandelion) with biomedical applications: A Review. International Journal of Molecular Sciences, 26: 450. Go to original source... Go to PubMed...
  52. Vyvyan J.R. (2002): Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 58: 1631-1646. Go to original source...
  53. Walters D.R., Walker R.L., Walker K.C. (2003): Lauric acid exhibits antifungal activity against plant pathogenic fungi. Journal of Phytopathology, 151: 228-230. Go to original source...
  54. Wei L.S., Wee W., Siong J.Y.F., Syamsumir D.F. (2011): Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Medica Iranica, 49: 670-674.
  55. Weston L.A., Duke S.O. (2003): Weed and crop allelopathy. Critical Reviews in Plant Sciences, 22: 367-389. Go to original source...
  56. Zheng C.J., Yooa J.S., Leeb T.G., Choc H.Y., Kimd Y.H., Kim W.G. (2005): Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters. 579: 5157-5162. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.