Plant Protect. Sci., 2025, 61(3):242-254 | DOI: 10.17221/128/2024-PPS
Influence of 'Candidatus Phytoplasma prunorum' on primary and secondary metabolites of apricotsOriginal Paper
- 1 Department of Fruit Science, Faculty of Horticulture, Mendel University in Brno, Brno, Czech Republic
- 2 Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Brno, Czech Republic
'Candidatus Phytoplasma prunorum' ('Ca. P. prunorum') is a causative agent of European stone fruit yellows (ESFY), an economically important decline disease of some stone fruit species (Prunus spp.). The present research focused on the influence of 'Ca. P. prunorum' on primary and secondary metabolites in four apricot genotypes consisting of older trees (genotypes Nora, LEM 159, group 1) and younger trees (genotypes H 74 and H 177, group 2). The content of sugars (glucose, sucrose, fructose and sorbitol), total phenolic content (TPC), total flavonoid content (TFC), antioxidant capacity (AC), total soluble proteins (TSPC), mineral ions: potassium (K+), sodium (Na+), magnesium (Mg2+) and calcium (Ca2+), pigments: chlorophyll a, b and carotenoids, and indolic compounds content (ICC) were analysed in two time periods during the year in the leaves of tested trees. The results revealed that the presence of phytoplasma/ESFY symptoms significantly decreased the content of pigments in both groups during the summer sampling period. ESFY caused a decrease of TPC, TFC and ICC in the H 177 genotype. The phytoplasma decreased the TSPC and K+ content in older trees during both sampling periods. The only increase caused by phytoplasma infection was observed in glucose content, but only in the group of older plants. The results of this study support the idea that 'Ca. P. prunorum' affects metabolites in plants' defence system and manipulates basic metabolic processes during successful infection.
Keywords: plant metabolism; plant-pathogen interactions; Prunus; European stone fruit yellows
Received: July 29, 2024; Revised: February 7, 2025; Accepted: February 10, 2025; Prepublished online: March 21, 2025; Published: July 20, 2025 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Agrios G.N. (2005): Plant pathology. Burlington, Elsevier Academic Press.
- Albrecht U., Fiehn O., Bowman K.D. (2016): Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. Plant Physiology and Biochemistry, 107: 33-44.
Go to original source...
Go to PubMed...
- Al-Ghaithi A.G., Hanif M.A., Al-Busaidi W.M., Al-Sadi A.M. (2016): Increased sodium and fluctuations in minerals in acid limes expressing witches' broom symptoms. Springer Plus, 5: 1-8.
Go to original source...
Go to PubMed...
- Ayvaci H., Güldür M.E., Dikilitas M. (2022): Physiological and biochemical changes in lucerne (Medicago sativa) plants infected with 'Candidatus Phytoplasma australasia'-related strain (16SrII-D Subgroup). The Plant Pathology Journal, 38: 146.
Go to original source...
Go to PubMed...
- Bertaccini A., Lee I.M. (2018): Phytoplasmas: An update. In: Rao G.P., Bertaccini A., Fiore N., Lieting L.W. (eds): Phytoplasmas: Plant Pathogenic Bacteria-I. Singapore, Springer: 1-29.
Go to original source...
- Bertamini M., Grando M.S., Muthuchelian K., Nedunchezhian N. (2002a): Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiological and Molecular Plant Pathology, 61: 349-356.
Go to original source...
- Bertamini M., Muthuchelian K., Grando M.S., Nedunchezhian N. (2002b): Effects of phytoplasma infection on growth and photosynthesis in leaves of field grown apple (Malus pumila Mill. cv. Golden Delicious). Photosynthetica, 40: 157-160.
Go to original source...
- Bertamini M., Nedunchezhian N., Tomasi F., Grando M.S. (2002c): Phytoplasma [Stolbur-subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1, 5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiological and Molecular Plant Pathology, 61: 357-366.
Go to original source...
- Bertamini M., Grando M.S., Nedunchezhian N. (2003): Effects of phytoplasma infection on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biologia Plantarum, 47: 237-242.
Go to original source...
- Blatny P., Kvasnicka F., Loucka R., Safarova H. (1997): Determination of ammonium, calcium, magnesium, and potassium in silage by capillary isotachophoresis. Journal of Agricultural and Food Chemistry, 45: 3554-3558.
Go to original source...
- Buoso S., Musetti R., Marroni F., Calderan A., Schmidt W., Santi S. (2022): Infection by phloem-limited phytoplasma affects mineral nutrient homeostasis in tomato leaf tissues. Journal of Plant Physiology, 271: 153659.
Go to original source...
Go to PubMed...
- Cho M., Lee S. (2015): Phenolic phytoalexins in rice: Biological functions and biosynthesis. International Journal of Molecular Sciences, 16: 29120-29133.
Go to original source...
Go to PubMed...
- Davosir D., Šola I., Ludwig-Müller J., Šeruga Musić M. (2023): Flavescence Dorée strain-specific impact on phenolic metabolism dynamics in grapevine (Vitis vinifera) throughout the development of phytoplasma infection. Journal of Agricultural and Food Chemistry, 72: 189-199.
Go to original source...
Go to PubMed...
- Deans C.A., Sword G.A., Lenhart P.A., Burkness E., Hutchison W.D., Behmer S.T. (2018): Quantifying plant soluble protein and digestible carbohydrate content, using corn (Zea mays) as an exemplar. Journal of Visualized Experiments, 6: e58164.
Go to original source...
- Dermastia M. (2019): Plant hormones in phytoplasma infected plants. Frontiers in Plant Science, 10: 477.
Go to original source...
Go to PubMed...
- Dermastia M., Tomaž S., Strah R., Lukan T., Coll A., Dušak B., Anžič B., Čepin T., et al. (2023): Candidate pathogenicity factor/effector proteins of 'Candidatus Phytoplasma solani' modulate plant carbohydrate metabolism, accelerate the ascorbate-glutathione cycle, and induce autophagosomes. Frontiers in Plant Science, 14: 1232367.
Go to original source...
Go to PubMed...
- Errea P., Feucht W., Gutmann M. (2000): Physiological implications of flavan-3-ols in apricot-rootstock combinations. Advances in Horticultural Science, 14: 1000-1009.
- Favali M.A., Toppi L.D., Vestena C., Fossati F., Musetti R. (2001): Phytoplasmas associated with tomato stolbur disease. Acta Horticulturae (ISHS), 551: 93-99.
Go to original source...
- Gallinger J., Zikeli K., Zimmermann M.R., Görg L.M., Mithöfer A., Reichelt M., Seemüller E., Gross J., et al. (2021): Specialised 16SrX phytoplasmas induce diverse morphological and physiological changes in their respective fruit crops. PLoS Pathogens, 17: e1009459.
Go to original source...
Go to PubMed...
- Gang S., Sharma S., Saraf M., Buck M., Schumacher J. (2019): Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-protocol, 9: e3230-e3230.
Go to original source...
Go to PubMed...
- Giorno F., Guerriero G., Biagetti M., Ciccotti A.M., Baric S. (2013): Gene expression and biochemical changes of carbohydrate metabolism in in vitro micro-propagated apple plantlets infected by 'Candidatus Phytoplasma mali'. Plant Physiology and Biochemistry, 70: 311-317.
Go to original source...
Go to PubMed...
- Glickmann E., Dessaux Y. (1995): A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61: 793-796.
Go to original source...
Go to PubMed...
- Gogoi R., Singh D.V., Srivastava K.D. (2001): Phenols as a biochemical basis of resistance in wheat against Karnal bunt. Plant Pathology, 50: 470-476.
Go to original source...
- Gross J., Gallinger J., Görg L.M. (2022): Interactions between phloem-restricted bacterial plant pathogens, their vector insects, host plants, and natural enemies, mediated by primary and secondary plant metabolites. Entomologia Generalis, 42: 185-215.
Go to original source...
- Guardado-Fierros B.G., Tuesta-Popolizio D.A., Lorenzo-Santiago M.A., Rodriguez-Campos J., Contreras-Ramos S.M. (2024): Comparative study between Salkowski reagent and chromatographic method for auxins quantification from bacterial production. Frontiers in Plant Science, 15: 1378079.
Go to original source...
Go to PubMed...
- Hemmati C. (2021): Biochemical changes induced by phytoplasmas in plants. CABI Reviews, 16: 051.
Go to original source...
- Huber D., Römheld V., Weinmann M. (2012): Relationship between nutrition, plant diseases and pests. In: Marschner J. (ed.): Mineral Nutrition of Higher Plants, Amsterdam, Elsevier, 283-298.
Go to original source...
- Kiss T., Šafářová D., Navrátil M., Nečas T. (2024): Molecular characterisation of 'Candidatus Phytoplasma prunorum' in the Czech Republic and susceptibility of apricot rootstocks to the two most abundant haplotypes. Microorganisms, 12: 399.
Go to original source...
Go to PubMed...
- Kumar S., Abedin M.M., Singh A.K., Das S. (2020): Role of phenolic compounds in plant-defensive mechanisms. Plant Phenolics in Sustainable Agriculture, 1: 517-532.
Go to original source...
- Kunkel B.N., Harper C.P. (2018): The roles of auxin during interactions between bacterial plant pathogens and their hosts. Journal of Experimental Botany, 69: 245-254.
Go to original source...
Go to PubMed...
- Lichtenthaler H.K. (1987): Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Colowick S.P., Kaplan N.O. (eds): Methods in Enzymology. San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto, Academic Press: 350-382.
Go to original source...
- Liu Z., Zhao J., Liu M. (2016): Photosynthetic responses to phytoplasma infection in Chinese jujube. Plant Physiology and Biochemistry, 105: 12-20.
Go to original source...
Go to PubMed...
- Marcone C., Jarausch B., Jarausch W. (2010): Candidatus Phytoplasma prunorum, the causal agent of European stone fruit yellows: An overview. Journal of Plant Pathology, 92: 19-34.
- Mitrovic P., Djalovic I., Kiprovski B., Veljović Jovanović S., Trkulja V., Jelušić A., Popović T. (2021): Oxidative stress and antioxidative activity in leaves and roots of carrot plants induced by Candidatus Phytoplasma solani. Plants, 10: 337.
Go to original source...
Go to PubMed...
- Mittelberger C., Yalcinkaya H., Pichler C., Gasser J., Scherzer G., Erhart T., Oberhuber M., Holzner B., et al. (2017): Pathogen-Induced leaf chlorosis: products of chlorophyll breakdown found in degreened leaves of phytoplasma-infected apple (Malus× domestica Borkh.) and apricot (Prunus armeniaca L.) trees relate to the pheophorbide a oxygenase/Phyllobilin pathway. Journal of Agricultural and Food Chemistry, 65: 2651-2660.
Go to original source...
Go to PubMed...
- Mrázová M., Rampáčková E., Šnurkovič P., Ondrášek I., Nečas T., Ercisli S. (2021): Determination of selected beneficial substances in peach fruits. Sustainability, 13: 14028.
Go to original source...
- Musetti R., Favali M.A., Pressacco L. (2000): Histopathology and polyphenol content in plants infected by phytoplasmas. Cytobios, 102: 133-148.
- Musetti R., Favali M.A. (2003): Cytochemical localisation of calcium and X-ray microanalysis of Catharanthus roseus L. infected with phytoplasmas. Micron,
Go to original source...
- 34: 387-393.
- Musetti R., Marabottini R., Badiani M., Martini M., di Toppi L.S., Borselli S., Borgi M., Osler R. (2007): On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence dorée disease. Functional Plant Biology, 34: 750-758.
Go to original source...
Go to PubMed...
- Musetti R., Buxa S.V., De Marco F., Loschi A., Polizzotto R., Kogel K.H., van Bel A.J. (2013): Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Molecular Plant-Microbe Interactions, 26: 379-386.
Go to original source...
Go to PubMed...
- Musetti R., Pagliari L. (2019): Phytoplasmas: methods and protocols. New York, Humana.
Go to original source...
- Namba S. (2019): Molecular and biological properties of phytoplasmas. Proceedings of the Japan Academy, Series B, 95: 401-418.
Go to original source...
Go to PubMed...
- Naoumkina M.A., Zhao Q., Gallego-Giraldo L., Dai X., Zhao P.X., Dixon R.A. (2010): Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology, 11: 829-846.
Go to original source...
Go to PubMed...
- Nečas T., Ondrášek I., Krška B. (2015): 'Candidatus Phytoplasma prunorum'-a pathogen spreading uncontrollably in apricot orchards in the Czech Republic. Acta Horticulturae (ISHS), 1105: 131-136.
Go to original source...
- Negro C., Sabella E., Nicolì F., Pierro R., Materazzi A., Panattoni A., Aprile A., Nutricati E., et al. (2020): Biochemical changes in leaves of Vitis vinifera cv. Sangiovese infected by bois noir phytoplasma. Pathogens, 9: 269.
Go to original source...
Go to PubMed...
- Pagliarani C., Gambino G., Ferrandino A., Chitarra W., Vrhovsek U., Cantu D., Schubert A. (2020): Molecular memory of Flavescence dorée phytoplasma in recovering grapevines. Horticulture Research, 7: 126.
Go to original source...
Go to PubMed...
- Pastore M., Cardone A., Catucci L., Vaglio M.D., Gervasi F., Scognamiglio G., Bertaccini A. (2010): Results of patch-grafting of tissue infected by 'Candidatus Phytoplasma pyri' or by 'Candidatus Phytoplasma prunorum', respectively on pear and apricot plants cultivated in pot. Julius-Kühn-Archiv, 427: 421-423.
- Pertot I., Musetti R., Pressacco L., Osler R. (1998): Changes in indole-3-acetic acid level in micropropagated tissues of Catharanthus roseus infected by the agent of the clover phyllody and effect of exogenous auxins on phytoplasma morphology. Cytobios, 95: 13-23.
- Pratyusha S. (2022): Phenolic compounds in the plant development and defense: an overview. In: Hasanuzzaman M., Nahar K. (eds): Plant Stress Physiology-Perspectives in Agriculture, London, IntechOpen: 125-140.
Go to original source...
- Prezelj N., Covington E., Roitsch T., Gruden K., Fragner L., Weckwerth W., Chersicola M., Vodopivec M., et al. (2016): Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. 'Modra frankinja' with flavescence dorée phytoplasma. Frontiers in Plant Science, 7: 711.
Go to original source...
Go to PubMed...
- Raiesi T., Golmohammadi M. (2020): Changes in nutrient concentrations and biochemical characteristics of Mexican lime (Citrus aurantifolia) infected by phytoplasma. Journal of General Plant Pathology, 86: 486-493.
Go to original source...
- Riedle-Bauer M., Bachinger K., Stradinger J., Emberger M., Mörtel J., Sára H. (2012): Transmission of European Stone Fruit Yellows phytoplasma ('Candidatus Phytoplasma prunorum') during the propagation process. Mitteilungen Klosterneuburg, 62: 177-181.
- Rojas C.M., Senthil-Kumar M., Tzin V., Mysore K.S. (2014): Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5: 17.
Go to original source...
Go to PubMed...
- Rossi G., Beni C., Socciarelli S., Marconi S., Pastore M., Del Vaglio M., Gervasi F. (2010): Mineral nutrition of pear and apricot trees cultivated in Southern Italy area damaged by phytoplasma microorganisms. Acta Horticulturae (ISHS), 868: 433-438.
Go to original source...
- Rusjan D., Mikulic-Petkovšek M. (2014): Phenolic responses in 1-year-old canes of Vitis vinifera cv. Chardonnay induced by grapevine yellows (Bois noir). Australian Journal of Grape and Wine Research, 21: 123-134.
Go to original source...
- Singh H.P., Kaur S., Bitish D.R., Kohli R.K. (2014): Ferulic acid impairs rhizogenesis and root growth, and alters associated biochemi cal changes in mung bean (Vigna radiata) hypocotyls. Journal of Plant Interactions, 204: 267-274.
Go to original source...
- Steffek R., Follak S., Sauvion N., Labonne G., MacLeod A. (2012): Distribution of 'Candidatus Phytoplasma prunorum' and its vector Cacopsylla pruni in European fruit-growing areas: a review. EPPO Bulletin, 42: 191-202.
Go to original source...
- Tan Y., Wei H.R., Wang J.W., Zong X.J., Zhu D.Z., Liu Q.Z. (2015): Phytoplasmas change the source-sink relationship of field-grown sweet cherry by disturbing leaf function. Physiological and Molecular Plant Pathology, 92: 22-27.
Go to original source...
- Trouvelot S., Héloir M.C., Poinssot B., Gauthier A., Paris F., Guillier C., Combier M., Trdá L., et al. (2014): Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in Plant Science, 5: 592.
Go to original source...
Go to PubMed...
- Usenik, V., Krška, B., Vičan, M., Štampar, F. (2006): Early detection of graft incompatibility in apricot (Prunus armeniaca L.) using phenol analyses. Scientia Horticulturae, 109: 332-338.
Go to original source...
- Usenik, V., Štampar, F. (2000): Influence of various rootstocks for cherries on p-coumaric acid, genistein and prunin content and their involvement in the incompatibility process. Gartenbauwissenschaft, 65: 245-250.
Go to original source...
- van Bel A.J.E., Musetti R. (2019): Sieve element biology provides leads for research on phytoplasma lifestyle in plant hosts. Journal of Experimental Botany, 70: 3737-3755.
Go to original source...
Go to PubMed...
- Very A.A., Sentenac H. (2003): Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review of Plant Biology, 54: 575-603.
Go to original source...
Go to PubMed...
- Wang L., Sun R., Zhang Q., Luo Q., Zeng S., Li X., Gong X., Li Y., et al. (2018): An update on polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism & Toxicology. London, Ashley Publications: 1-15.
Go to original source...
- Wang X., Hu Q., Wang J., Lou L., Xu X., Chen X. (2022): Comparative biochemical and transcriptomic analyses provide new insights into phytoplasma infection responses in cucumber. Genes, 13: 1903.
Go to original source...
Go to PubMed...
- Wei W., Inaba J., Zhao Y., Mowery J.D., Hammond R. (2022): Phytoplasma infection blocks starch breakdown and triggers chloroplast degradation, leading to premature leaf senescence, sucrose reallocation, and spatiotemporal redistribution of phytohormones. International Journal of Molecular Sciences, 23: 1810.
Go to original source...
Go to PubMed...
- Xue C., Liu Z., Wang L., Li H., Gao W., Liu M., Zhao Z., Zhao J. (2020): The antioxidant defense system in Chinese jujube is triggered to cope with phytoplasma invasion. Tree Physiology, 40): 1437-1449.
Go to original source...
Go to PubMed...
- Ye X., Wang H., Chen P., Fu B., Zhang M., Li J., Zheng X., Tan B., et al. (2017): Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals multiple levels of regulation in phytoplasma-infected Ziziphus jujuba Mill. Horticulture Research, 4: 17080.
Go to original source...
Go to PubMed...
- Zafari S., Niknam V., Musetti R., Noorbakhsh S.N. (2012): Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia). Acta Physiologiae Plantarum, 34: 561-568.
Go to original source...
- Zhu J., Qi J., Fang Y., Xiao X., Li J., Lan J., Tang C. (2018): Characterisation of sugar contents and sucrose metabolising enzymes in developing leaves of Hevea brasiliensis. Frontiers in Plant Science, 9: 58.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.