Plant Protect. Sci., X:X | DOI: 10.17221/104/2024-PPS

Biological activity of Paenibacillus polymyxa GT2 isolate from soil in Japan against anthracnose caused by Colletotrichum orbiculare in cucumberOriginal Paper

Abdul Wali Haqyar1, Masatoshi Ino2, Naoto Kimura2, Takumi Okido3, Junichi Kihara3, Makoto Ueno ORCID...3
1 Laboratory of Plant Pathology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
2 The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
3 Department of Plant Protection, Faculty of Agriculture, Shaikh Zayed University, Khost, Afghanistan

Cucumber anthracnose is a destructive fungal disease caused by Colletotrichum orbiculare. Common control strategies include chemical fungicides. However, this can lead to the development of pathogenic resistance. Therefore, it is necessary to identify natural compounds or microorganisms to develop new chemicals and the biological control of fungal pathogens. Isolate GT2, a bacterial isolate from soil samples collected in Shimane Prefecture, Japan, significantly inhibited in vitro mycelial growth and conidial germination of C. orbiculare, indicating a fungicidal effect against this pathogen. Furthermore, anthracnose lesion formation was significantly suppressed without phytotoxicity when cucumber leaves were pretreated with a cell culture suspension of the isolate GT2 before inoculation with C. orbiculare. Bioautography of the culture filtrate (CF) of the isolate GT2 using thin-layer chromatography showed that the compound inhibiting C. orbiculare growth had an Rf value of 0.38. The effective compound in GT2-CF was ethyl acetate insoluble and heat-stable at 121 °C and has a molecular weight larger than 1 000 Da. In conclusion, Paenibacillus polymyxa GT2 demonstrated the potential for developing a new fungicide and biological agent against anthracnose disease caused by C. orbiculare.

Keywords: biological control; disease control; fungicidal activity; inhibitory compound

Received: June 24, 2024; Revised: June 1, 2025; Accepted: June 3, 2025; Prepublished online: December 4, 2025 

Download citation

References

  1. Abdullah Z.K., Kihara J., Gondo Y., Ganphung R., Yokoyama Y., Ueno M. (2021): Suppressive effect of secondary metabolites from Streptomyces plumbeus isolate F31D against Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt of tomato. Journal of General Plant Pathology, 87: 335-343. Go to original source...
  2. Abd-El-Kareem F., Elshahawy I.E., Abd-Elgawad M.M.M. (2022): Native bacteria for field biocontrol of black root rot in Egyptian strawberry. Bulletin of the National Research Centre, 46: 82. Go to original source...
  3. Agrios G.N. (2005): Plant Pathology. Academic Press, San Diego: 428-685.
  4. Ali M.A., Lou Y., Hafeez R., Li X., Hossain A., Xie T., Lin L., Li B., et al. (2021): Functional analysis and genome mining reveal high potential of biocontrol and plant growth promotion in nodule-inhabiting bacteria within Paenibacillus polymyxa complex. Frontiers in Microbiology, 11: 618601. Go to original source... Go to PubMed...
  5. Channabasava A., Lakshman H.C., Jorquera M.A. (2015): Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L.). Journal of Soil Science and Plant Nutrition, 15: 35-45. Go to original source...
  6. Chincholkar S.B., Mukerji K.G. (2010): Biological control of plant diseases. CRC Press, Boca Raton.
  7. Chung W.H., Ishii H., Nishimura K., Fukaya M., Yano K., Kajitani Y. (2006): Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Disease, 90: 506-512. Go to original source... Go to PubMed...
  8. Ganphung R., Kihara J., Ueno M. (2019): Biological control of powdery mildew caused by Podosphaera xanthii in cucumber by Streptomyces blastmyceticus strain STS1 isolated in Shimane Prefecture. Japanese Society of Agricultural Technology Management, 26: 61-68.
  9. Ganphung R., Kihara J., Ueno M. (2021): Suppressive effect of Burkholderia sp, GT1022 isolated from soil against anthracnose disease caused by Colletotrichum orbiculare. Japanese Society of Agricultural Technology Management, 27: 185-195.
  10. Grady E.N., MacDonald J., Liu L., Richman A., Yuan Z.C. (2016): Current knowledge and perspectives of Paenibacillus a review. Microbial Cell Factories, 15: 1-18. Go to original source... Go to PubMed...
  11. Grimstad S.O., Frimanslund E. (1993): Effect of different day and night temperature regimes on greenhouse cucumber young plant production, flower bud formation and early yield. Scientia Horticulturae (ISHS), 53: 191-204. Go to original source...
  12. Huong N.L., Itoh K., Suyama K. (2007): Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacteria in Vietnamese soils. Microbes and Environments, 22: 243-256. Go to original source...
  13. Hyde K.D., Cai L., Cannon P.F., Crouch J.A., Crous P.W., Damm U., Goodwin P.H., Chen H., et al. (2009): Colletotrichum names in current use. Fungal Diversity, 39: 147-182.
  14. Inada M., Ishii H., Chung W.H., Yamada T., Yamaguchi J., Furuta A. (2008): Occurrence of strobilurin-resistant strains of Colletotrichum. Japanese Journal of Phytopathology. 74: 114-117. Go to original source...
  15. Ino M., Kihara J., Ueno M. (2022): Inhibitory potential of metabolites produced by Cercospora sp. strain ME202 isolated from Trifolium incarnatum against anthracnose caused by Colletotrichum orbiculare. Journal of General Plant Pathology, 88: 309-317. Go to original source...
  16. Joshi S., Borkar P.G., Barde P.S., Salvi P.P. (2022): Assessment of severity of bottle gourd anthracnose in Konkan region of Maharashtra. The Pharma Innovation Journal, 11: 262-265.
  17. Kim Y.S., Balaraju K., Jeon Y. (2016): Biological control of apple anthracnose by Paenibacillus polymyxa APEC128, an antagonistic rhizobacterium. The Plant Pathology Journal, 32: 251-259. Go to original source... Go to PubMed...
  18. Kimura M. (1980): A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111-120. Go to original source... Go to PubMed...
  19. Kishi K. (1998): Plant diseases in Japan. Zenkoku Noson Kyoiku Kyokai Publishing Co., Ltd., Tokyo. (in Japanese)
  20. Lemtukei D., Tamura T., Nguyen Q.T., Kihara J., Ueno M. (2016): Antagonistic potential of isolated microorganisms from soil in Shimane prefecture against rice blast disease cause by Maganporthe oryzae. Bulletin of the Faculty of Life and Environmental Science Shimane University. 21: 9-12.
  21. Matsui T., Kato K., Namihira T., Shinzato N., Semba H. (2009): Stereospecific degradation of phenylsuccinate by actinomycetes. Chemosphere, 76: 1278-11282. Go to original source... Go to PubMed...
  22. Mikkola R., Andersson M.A., Grigoriev P., Heinonen M., Salkinoja-Salonen M.S. (2017): The toxic mode of action of cyclic lipodepsipeptide fusaricidins, produced by Paenibacillus polymyxa, toward mammalian cells. Journal of Applied Microbiology, 123: 436-449. Go to original source... Go to PubMed...
  23. Nguyen X.H., Naing K.W., Lee Y.S., Moon J.H., Lee J.H., Kim K.Y. (2015): Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on Strawberry Fruits. Journal of Basic Microbiology, 55: 625-634. Go to original source... Go to PubMed...
  24. Ons L., Bylemans D., Thevissen K., Cammue, B. P. A. (2020): Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 4: 1930. Go to original source... Go to PubMed...
  25. Renner S.S., Schaefer H. (2016): Phylogeny and evolution of the Cucurbitaceae. In: Grumet R., Katzir N, Garcia-Mas J. (eds): Springer, Cham: 13-23. Go to original source...
  26. Saitou N., Nei M. (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.
  27. Sato T., Moriwaki J. (2009): Causal fungi of plant anthracnose (1). Microbiology and Culture Collections, 25: 97-104.
  28. Shimizu M., Nakagawa Y., Sato Y., Furumai T., Igarashi Y., Onaka H., Yoshida R., Kunoh H. (2000): Studies on endophytic actinomycetes (I) Streptomyces sp. isolated from Rhododendron and its antifungal activity. Journal of General Plant Pathology, 66: 360-366. Go to original source...
  29. Son S.H., Khan Z., Kim S.G., Kim Y.H. (2009): Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. Journal of Applied Microbiology, 107: 524-532. Go to original source... Go to PubMed...
  30. Suzuki S., Taketani H., Kusumoto K., Kashiwagi Y. (2006): High-throughput genotyping of filamentous fungus Aspergillus oryzae based on colony direct polymerase chain reaction. Journal of Bioscience and Bioengineering, 102: 572-574. Go to original source... Go to PubMed...
  31. Tase N., Saeki A., Fushiwaki Y. (1989): Groundwater contamination by PCNB on the northern foot of Mt. Asama. Journal of Groundwater Hydrology, 31: 31-37. Go to original source...
  32. Thompson D.C., Jenkins S.F. (1985): Effects of temperature, moisture and cucumber cultivar resistance on lesion size increase and conidial production by Colletotrichum lagenarium. Phytopathology, 75: 828-832. Go to original source...
  33. Thompson J.D., Higgins D.G., Gibson T.J. (1994): CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680. Go to original source... Go to PubMed...
  34. Timmusk S., Van West P., Gow N.A.R., Huffstutler R.P. (2009): Paenibacillus polymyxa antagonises oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. Journal of Applied Microbiology, 106: 1473-1481. Go to original source... Go to PubMed...
  35. Wasilwa L.A., Correll J.C., Morelock T.E., McNew R.E. (1993): Reexamination of races of the cucurbit anthracnose pathogen Colletotrichum orbiculare. Phytopathology, 83: 1190-1198. Go to original source...
  36. Wong F.P., Midland S.L. (2007): Sensitivity distributions of California populations of Colletotrichum cereale to the DMI fungicides propiconazole, myclobutanil, tebuconazole, and triadimefon. Plant Disease, 91: 1547-1555. Go to original source... Go to PubMed...
  37. Wu X.C., Shen X.B., Ding R., Qian C.D., Fang H.H., Li O. (2010): Isolation and partial characterisation of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiology Letters, 310: 32-38. Go to original source... Go to PubMed...
  38. Yuan E., Yuan J., Yang F., Wang L., Ma J., Li J., Pu X., Raza W., et al. (2017): PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Express, 7: 104. Go to original source... Go to PubMed...
  39. Zhai Y., Zhu J.X., Tan T.M., Xu J.P., Shen A.R., Yang X.B., Li J.L., Zeng L.B., et al. (2021): Isolation and characterisation of antagonistic Paenibacillus polymyxa HX-140 and its biocontrol potential against Fusarium wilt of cucumber seedlings. BMC Microbiology, 21: 75. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.