Plant Protect. Sci., X:X | DOI: 10.17221/150/2024-PPS

Using thermal time to predict the timing of flight activity in Noctuidae (Lepidoptera) species: Calculation and verification of forecast methodsOriginal Paper

Alois Honěk ORCID...1, Zdenka Martinková ORCID...1, Ivo Novák2, Terezia Jauschová3, Lenka Sarvašová3, Miroslav Saniga ORCID...3, Milada Holecová ORCID...4, Ján Kulfan3, Peter Zach3
1 Czech Agrifood Research Center, Prague, Czech Republic
2 Crop Research Institute, Roztoky, Czech Republic
3 Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovak Republic
4 Department of Zoology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic

From 1967 to 1995, the flight activity of 25 monovoltine species of moths (Noctuidae, Lepidoptera) was monitored via a light trap located in Prague (50.09 N, 14.30 E). For each species, the day when half of the individuals were caught (peak of flight activity, PFA) was specified each year. This study addresses a method of predicting the calendar date of the PFA via thermal time. We determined a base temperature of +6 °C, at which the differences between the predicted and actual dates of the PFA were minimal. For each species and each year, the sum of the degree days exceeding the base temperature from January 1 to the date of the PFA (SumT) was determined, and the average SumT throughout the study was calculated. Each year, the predicted date of the PFA is the date when the average SumT was achieved. Sixty-five percent of the predicted PFA dates fell within ±5 days of the actual date of the PFA. Shifts in the magnitude and direction of the difference between the actual and predicted PFAs affecting concurrently all species were caused by the thermal conditions of the year.

Keywords: base temperature; peak flight activity; prediction; thermal time

Received: August 27, 2024; Revised: April 29, 2025; Accepted: April 29, 2025; Prepublished online: September 9, 2025 

Download citation

References

  1. Altermatt F. (2010): Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277: 1281-1287. Go to original source... Go to PubMed...
  2. Altermatt F., Baumeyer A., Ebert D. (2009): Experimental evidence for male biased flight-to-light behavior in two moth species. Entomologia Experimentalis et Applicata, 130: 259-265. Go to original source...
  3. Anonymous (2024): Rostlinolékařský portál https://eagri.cz/public/app/srs_pub/fytoportal/public/?key=%221d717fd390a3896993e5fa66fb5b2090%22#rlp|so|skudci. (Accessed Mar 28, 2024)
  4. Beck S.D. (1968): Insect Photoperiodism. Academic Press: New York and London.
  5. Bonan G. (2002): Ecological Climatology. Cambridge University Press: Cambridge.
  6. Cayrol R.A. (1972): Famille des Noctuidae. In: Balachowsky A.S. (ed.): Traité d'Entomologie Appliquée à l'Agriculture. Lépidoptères Zygaenoidea, Pyraloidea, Noctuoidea. Tome 2, Vol. 2., Masson et Cie, Editeurs, Paris: 1255-1471. (In French)
  7. Esbjerg P., Sigsgaard L. (2014): Phenology and pest status of Agrotis segetum in a changing climate. Crop Protection, 62: 64-71. Go to original source...
  8. Frears S.L., Chown S.L., Webb P.I. (1997): Behavioural thermoregulation in the mopane worm (Lepidoptera). Journal of Thermal Biology, 22: 325-330. Go to original source...
  9. Ge S.S., He W., He L.M., Yan R., Zhang H.W., Wu K.M. (2021): Flight activity promotes reproductive processes in the fall armyworm, Spodoptera frugiperda. Journal of Integrative Agriculture, 20: 727-735. Go to original source...
  10. Heinrich B. (1993): The hot-blooded insects: strategies and mechanisms of thermoregulation. Harvard University Press: Cambridge. Go to original source...
  11. Honěk A., Kocourek F. (1990): Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Geographie der Tiere, 117: 401-439.
  12. Honěk A., Martinková Z., Novák I., Jauschová T. Sarvašová L., Saniga M., Holecová M., Kulfan J., et al. (2025): Seasonal flight activity and the length of the generation period of selected Noctuidae (Lepidoptera) - extent and causes of variation. Folia Oecologica, 52: 189-201. Go to original source...
  13. Hrubešová V., Šefrová H., Laštůvka Z. (2023): The importance of local faunal research of moths for plant protection: an example from an agricultural landscape in central Europe. Plant Protection Science, 59: 348-355. Go to original source...
  14. Jarvis J.L., Brindley T.A. (1965): Predicting moth flight and oviposition of European corn borer by the use of temperature accumulations. Journal of Economic Entomology, 58: 300-302. Go to original source...
  15. Jermy T. (1974): Die Bedeutung der Lichtfallen für die Faunistik und die angewandte Entomologie. Folia Entomologica Hungarica, 27: 71-84. (In German)
  16. Jiang X.F., Luo L.Z., Sappington T.W. (2010): Relationship of flight and reproduction in beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome. Journal of Insect Physiology, 56: 1631-1637. Go to original source... Go to PubMed...
  17. Koch M. (1988): Wir bestimmen Schmetterlinge. Neumann Verlag: Leipzig. (In German)
  18. Kocsis M., Hufnagel L. (2011): Impacts of climate change on Lepidoptera species and communities. Applied Ecology and Environmental Research, 9: 43-72. Go to original source...
  19. Meszaros Z., Madaras K.M., Herczig B. (1979): Population dynamics of noctuids in Hungary. I. Scotia segetum Schiff., S. exclamationis L., Amathes c-nigrum L. Acta Zoologica Academiae Scientiarum Hungaricae, 14: 493-501.
  20. Miller F. (1956): Zemědělská entomologie. Nakladatelství Československé Akademie věd: Praha. (In Czech)
  21. Moore M.E., Alston M.A., Kingsolver J.G. (2023): Behavioral thermoregulation of caterpillars is altered by temperature, but not parasitism: an empirical field study. Ecosphere, 14: e4578. Go to original source...
  22. Novák I. (1983): An efficient light-trap for catching insects. Acta Entomologica Bohemoslovaca, 80: 29-34.
  23. Novák I. (1992): Příspěvek k poznání fauny motýlů dolního Povltaví. Beitrag zur Kenntnis der Lepidopterenfauna vom Niedermoldaugebiet. Zprávy Československé Společnosti Entomologické, 28: 70-86. (In Czech)
  24. Patočka J., Kulfan J. (2009): Motýle Slovenska - bionómia a ekológia (Lepidoptera of Slovakia - bionomics and ecology). Veda: Bratislava. (In Slovak)
  25. Raimondo S., Strazanac J.S., Butler L. (2004): Comparison of sampling techniques used in studying Lepidoptera population dynamics. Environmental Entomology, 3: 418-425. Go to original source...
  26. Scarbrough A.G., Sternburg J.G., Waldbauer G.P. (1977): Selection of the cocon spinning site by the larvae of Hyalophora cecropia (Saturniidae). Journal of the Lepidopterists Society 31: 153-166.
  27. Spuler A. (1908): Die Schmetterlinge Europas. E. Schweizerbartsche Verlagsbuchhandlung (E.Nägele): Stuttgart. (In German)
  28. Tauber M.J., Tauber C.A., Masaki S. (1986): Seasonal Adaptations of Insects. Oxford University Press: Oxford, New York.
  29. Taylor L.R., French R.S. (1974): Effect of light trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research, 63: 583-594. Go to original source...
  30. Thibout E., Nowbahari B. (1987): La sélection du lieu de nymphose chez la teigne du poireau, Acrolepiopsis assectella (Lep.): déterminisme exogène et variations interpopulations. Annales de la Societe entomologique de France, 23: 183-192. (In French) Go to original source...
  31. Trudgill D.L., Honek A., Li D., Van Straalen N.M. (2005)_ Thermal time - concepts and utility. Annals of Applied Biology, 146: 1-14. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.