Plant Protect. Sci., X:X | DOI: 10.17221/183/2024-PPS

Isolation and Identification of herbicidal active substances of Botrytis strain HZ-011Original Paper

Haixia Zhu ORCID...1,2, 3, Liang Cheng1,2,3, Yongqiang Ma1,2,3
1 Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, P. R. China
2 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
3 Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Xining, P. R. China

The herbicidally active Botrytis strain HZ-011 was isolated from naturally infected leaves of Rumex patientia L., and previous studies found that strain HZ-011 exhibits highly effective herbicidal effects against the broadleaf weeds Amaranthus retroflexus L., Elsholtzia densa Benth, Malva crispa, and Chenopodium album L. In this study, the active components of strain HZ-011 were isolated, purified, and structurally characterised using silica gel column chromatography, thin-layer chromatography, and high-performance liquid chromatography. The extraction test was carried out using four organic solvents with different polarities, and ethyl acetate was ultimately used as the extractant for the bulk preparation of the crude product of the active substances. Thin-layer chromatography yielded 10 different fractions and 26 components, and components B3 and E1 showed pathogenic effects on C. album. High-performance liquid chromatography (HPLC) of compound components B3 and E1 yielded three fractions with larger signal values and peak areas, and raw measurements of them revealed that component 3 was active. By analysing and comparing the spectral data of component 3 from 1H-NMR, 13C-MNR, ESIMS, and EIMS, component 3 was identified as dibutyl phthalate. The activity of the individual compounds was verified. The results of this study lay a theoretical foundation for the discovery and exploration of lead compounds. They will also provide a theoretical basis for developing this strain into a microbially-derived herbicide.

Keywords: herbicidal effects; active components; structural identification

Received: September 26, 2024; Revised: March 27, 2025; Accepted: April 2, 2025; Prepublished online: June 10, 2025 

Download citation

References

  1. Anderson R.L. (2007): Managing weeds with a dualistic approach of prevention and control. A review. Agronomy for Sustainable Development, 27: 13-18. Go to original source...
  2. Charudattan R. (2001): Biological control of weeds by means of plant pathogens: Significance for integrated weed management in modern agro-ecology. BioControl, 46: 229-260. Go to original source...
  3. Cordeau S., Triolet M., Wayman S., Steinberg C., Guillemin J.-P.
  4. (2016): Bioherbicides: dead in the water: A review of the existing products for integrated weed management. Crop Protection, 87: 44-49. Go to original source...
  5. Dayan F.E., Duke S.O., Notes A. (2014): Natural compounds as next-generation herbicides. Plant Physiology, 166: 1090-1105. Go to original source... Go to PubMed...
  6. Duke S.O., Dayan F.E., Rimando A.M., Schrader K.K., Aliotta G., Oliva A., Romagni J.G. (2002): Chemicals from nature for weed management. Weed Science, 50: 138-151. Go to original source...
  7. Duke S.O., Twitty A., Baker C., Sands D., Boddy L., Travaini M.L., Dayan F.E. (2024): New approaches to herbicide and bioherbicide discovery. Weed Science, 72: 444-464. Go to original source...
  8. Ellison C.A., Barreto R.W. (2004): Prospects for the management of invasive alien weeds using co-evolved fungal pathogens: A Latin American perspective. Biological Invasions, 6: 23-45. Go to original source...
  9. Green J.M., Owen M.D.K. (2011): Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. Journal of Agricultural and Food Chemistry, 59: 5819-5829. Go to original source... Go to PubMed...
  10. He D., Gao C., Zhao S., Chen H., Li P., Yang X., Li D., Zhao T., et al. (2024): Antibacterial, herbicidal, and plant growth-promoting properties of Streptomyces sp. STD57 from the Rhizosphere of Adenophora stricta. Microorganisms, 12: 2245. Go to original source... Go to PubMed...
  11. Lake E.C., Minteer C.R. (2017): A review of the integration of classical biological control with other techniques to manage invasive weeds in natural areas and rangelands. BioControl, 63: 71-86. Go to original source...
  12. Lapisardi G., Chiker F., Launay F., Nogier J.P., Bonardet J.L. (2005): Preparation, characterisation and catalytic activity of new bifunctional Ti-AlSBA15 materials. Application to a "one-pot" green synthesis of adipic acid from cyclohexene and organic hydroperoxides. Microporous and Mesoporous Materials, 78: 289-295. Go to original source...
  13. Li C., Chen J., Wang J., Han P., Luan Y., Ma X., Lu A. (2016): Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: concentrations, sources, and risk assessment. Science of The Total Environment, 568: 1037-1043. Go to original source... Go to PubMed...
  14. Li C.G. (2003): Herbicidal Activity of Metabolites from Botrytis cinerea and Isolation and Purification of Active Substances [PhD Thesis], Hebei Agricultural University, China.
  15. Mankidy R., Wiseman S., Ma H., Giesy J.P. (2013): Biological impact of phthalates. Toxicology Letters, 217: 50-58. Go to original source... Go to PubMed...
  16. Oerke EC. (2006): Crop losses to pests. The Journal of Agricultural Science, 144: 31-43. Go to original source...
  17. Schwarzländer M., Hinz H.L., Winston R.L., Day M.D. (2018): Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl, 63: 319-331. Go to original source...
  18. Skèkacs A. (2024): Overcoming the barriers to adoption of microbial bioherbicides. Pest Management Science, 80: 8-9. Go to original source... Go to PubMed...
  19. Stokstad E. (2013): The war against weeds down under. Science, 341: 734-736. Go to original source... Go to PubMed...
  20. Sun Y., Zhang M., Fang Z. (2020): Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends in Food Science & Technology, 105: 468-482. Go to original source...
  21. Wang H., Zhang F.Y., Dong J.G., Shang H.S. (2003): The bioassay of Botrytis cinerea and its metabolite. Journal of Northwest A & F University, 31: 119-122.
  22. Wang J., Chen G., Christie P., Zhang M., Luo Y.L., Teng Y. (2015): Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Science of the Total Environment, 523: 129-137. Go to original source... Go to PubMed...
  23. Wang Q., Zhang W., Gan X. (2024): Design, synthesis, and herbicidal activity of natural naphthoquinone derivatives containing diaryl ether structures. Journal of Agricultural and Food Chemistry, 72: 17200-17209. Go to original source... Go to PubMed...
  24. Zhang L.H., Feng J.L., Dong J.G. (2011): Optimisation of solid fermentation conditions for Botrytis cinerea BC7-3 strain. Scientia Agricultura Sinica, 44: 3477-3484.
  25. Zhao H.M., Du H., Xiang L., Li Y.-W., Li H., Cai Q.-Y., Mo C.-H.,
  26. Cao G., et al. (2016): Physiological differences in response to di-n-butyl phthalate (DBP) exposure between low- and high-DBP accumulating cultivars of Chinese flowering cabbage (Brassica parachinensis L). Environmental Pollution, 208: 840-849. Go to original source... Go to PubMed...
  27. Zhu H.X., Lin Z.R., Ma Y.Q. (2023): Evaluation of the biocontrol potential of the fungus Botrytis galanthina strain HZ-011 for herbicidal activity. Egyptian Journal of Biological Pest Control, 33: 51. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.