Plant Protect. Sci., 2019, 55(1):61-71 | DOI: 10.17221/20/2018-PPS

Selection and evaluation of potential reference genes for gene expression analysis in Avena fatuaOriginal Paper

Junjie Liu, Peng Li, Liuyang Lu, Lanfen Xie, Xiling Chen*, Baizhong Zhang*
College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, P.R. China

Eight commonly used candidate reference genes, 18S ribosomal RNA (rRNA) (18S), 28S rRNA (28S), actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1 alpha (EF1α), ribosomal protein L7 (RPL7), Alpha-tubulin (α-TUB), and TATA box binding protein-associated factor (TBP), were evaluated under various experimental conditions to assess their suitability in different developmental stages, tissues and herbicide treatments in Avena fatua. The results indicated the most suitable reference genes for the different experimental conditions. For developmental stages, 28S and EF1α were the optimal reference genes, both EF1α and 28S were suitable for experiments of different tissues, whereas for herbicide treatments, GAPDH and ACT were suitable for normalizations of expression data. In addition, GAPDH and EF1α were the suitable reference genes.

Keywords: wild oat; expression; herbicide

Published: March 31, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Liu J, Li P, Lu L, Xie L, Chen X, Zhang B. Selection and evaluation of potential reference genes for gene expression analysis in Avena fatua. Plant Protect. Sci. 2019;55(1):61-71. doi: 10.17221/20/2018-PPS.
Download citation

References

  1. Andersen C.L., Jensen J.L., Ørntoft T.F. (2004): Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64: 5245-5250. Go to original source... Go to PubMed...
  2. Bagnall N.H., Kotze A.C. (2010): Evaluation of reference genes for real-time PCR quantification of gene expression in the Australian sheep blowfly, Lucilia cuprina. Medical & Veterinary Entomology, 24: 176-181. Go to original source... Go to PubMed...
  3. Bettencourt B.R., Hogan C.C., Nimali M. (2007): Polyglutamine expansion in Drosophila: thermal stress and Hsp70 as selective agents. Journal of Biosciences 32: 537-547. Go to original source... Go to PubMed...
  4. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L. (2009): The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55: 611-622. Go to original source... Go to PubMed...
  5. Cavan G., Cussans J., Moss S. (2001): Managing the risks of herbicide resistance in wild oat. Weed Science, 49: 236-240. Go to original source...
  6. Chandna R., Augustine R., Bisht N.C. (2012): Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PloS ONE 7(5): e36918. doi: 10.1371/journal.pone.0036918 Go to original source... Go to PubMed...
  7. Cheng D., Zhang Z., He X., Liang G. (2013): Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PloS ONE 8(2): e57718. doi: 10.1371/journal.pone.0057718 Go to original source... Go to PubMed...
  8. Cruzhipolito H., Osuna M.D., Domínguezvalenzuela J.A., Espinoza N., De Prado R. (2011): Mechanism of resistance to accase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. Journal of Agricultural & Food Chemistry, 59: 7261-7267. Go to original source... Go to PubMed...
  9. Duhoux A., Délye C. (2013): Reference genes to study herbicide stress response in Lolium sp.: up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors. PLoS ONE, 8(5): e63576. doi: 10.1371/journal.pone.0063576 Go to original source... Go to PubMed...
  10. Expósito-Rodríguez M., Borges A.A., Borges-Pérez A., Perez J.A. (2008): Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 8: 131. doi: 10.1186/1471-2229-8-131 Go to original source... Go to PubMed...
  11. Gantasala N.P., Papolu P.K., Thakur P.K., Kamaraju D., Sreevathsa R., Rao U. (2013): Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Research Notes, 6: 1-11. Go to original source... Go to PubMed...
  12. Glare E.M., Divjak M., Bailey M.J., Walters E.H. (2002): β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax, 57: 765-770. Go to original source... Go to PubMed...
  13. Holm L.G., Plucknett D.L., Pancho J.V., Herberger K.P. (1977): The World's Worst Weeds. Distribution and Biology. Honolulu, East-West Center by the University Press of Havaii.
  14. Hornáková D., Matousková P., Kindl J., Valterová I., Pichová I. (2010): Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Analytical Biochemistry, 397: 118-120. Go to original source... Go to PubMed...
  15. Huggett J., Dheda K., Bustin S., Zumla A. (2005): Real-time RT-PCR normalisation; strategies and considerations. Genes & Immunity, 6: 279. Go to original source... Go to PubMed...
  16. Keith B.K., Lehnhoff E.A., Burns E.E., Menalled F.D., Dyer W.E. (2015): Characterisation of Avena fatua populations with resistance to multiple herbicides. Weed Research, 55: 621-630. Go to original source...
  17. Kim B.R., Nam H.Y., Kim S.U., Kim S.I., Chang Y.J. (2003): Normalization of reverse transcription quantitative-PCR with reference genes in rice. Biotechnology Letters, 25: 1869-1872. Go to original source... Go to PubMed...
  18. Li R., Wang S., Duan L., Li Z.H., Christoffers M.J., Mengistu L.W. (2009): Genetic diversity of wild oat (Avena fatua) populations from china and the united states. Weed Science, 55: 95-101. Go to original source...
  19. Li R., Zhang J., Chen G. (2010): Advance of study on identification of weed herbicide resistance. Chinese Agricultural Science Bulletin, 26: 289-292.
  20. Liang P., Guo Y., Zhou X., Gao X.W. (2014): Expression profiling in, Bemisia tabaci, under insecticide treatment: indicating the necessity for custom reference gene selection. PloS ONE, 9(1): e87514. doi: 10.1371/journal.pone.0087514 Go to original source... Go to PubMed...
  21. Logan J., Edwards K., Saunders N. (eds) (2009): Real-Time PCR: Current Technology and Applications. Norfolk, Caister Academic Press.
  22. Lord J.C., Hartzer K., Toutges M., Oppert B. (2010): Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. Journal of Microbiological Methods, 80: 219-221. Go to original source... Go to PubMed...
  23. Lu Y., Yuan M., Gao X., Kang T.H, Zhan S., Wan H., Li J.H. (2013): Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PloS ONE, 8(7): e68059. doi: 10.1371/journal.pone.0068059 Go to original source... Go to PubMed...
  24. Ma K.S., Li F., Liang P.Z., Chen X.W., Liu Y., Gao X.W. (2016): Identification and validation of reference genes for the normalization of gene expression data in qRT-PCR qPCR analysis in Aphis gossypii (Hemiptera: Aphididae). Journal of Insect Science, 16: 1-9. Go to original source... Go to PubMed...
  25. Mallona I., Lischewski S., Weiss J., Hause B., Egea-Cortines M. (2010): Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biology, 10: 4. Go to original source... Go to PubMed...
  26. Overbergh L., Giulietti A., Valckx D., Decallonne B., Bouillon R., Mathieu C. (2003): The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. Journal of Biomolecular Techniques: JBT, 14: 33-43.
  27. Petit C., Pernin F., Heydel J.M., Delye C. (2012): Validation of a set of reference genes to study response to herbicide stress in grasses. BMC Research Notes, 5: 1-10. Go to original source... Go to PubMed...
  28. Pfaffl M.W. (2001): A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9): e45. doi: 10.1093/nar/29.9.e45 Go to original source... Go to PubMed...
  29. Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. (2004): Determination of stable reference genes, differentially regulated target genes and sample integrity: BestKeeperExcel-based tool using pair-wise correlations. Biotechnology Letters, 26: 509-515. Go to original source... Go to PubMed...
  30. Ryan G.F. (1970): Resistance of common groundsel to simazine and atrazine. Weed Science, 18: 614-616. Go to original source...
  31. Ruan W., Lai M. (2007): Actin, a reliable marker of internal control? Clinica Chimica Acta, 385: 1-5. Go to original source... Go to PubMed...
  32. Spiess A.N., Deutschmann C., Burdukiewicz M., Himmelreich R., Klat K., Schierack P., Rödiger S. (2015): Impact of smoothing on parameter estimation in quantitative DNA amplification experiments. Clinical Chemistry, 61: 379-388. Go to original source... Go to PubMed...
  33. Spiess A.N., Rödiger S., Burdukiewicz M., Volksdorf T., Tellinghuisen J. (2016) System-specific periodicity in quantitative real-time polymerase chain reaction data questions threshold-based quantitation. Scientific Reports, 6, Article number: 38951. doi: 10.1038/srep38951 Go to original source... Go to PubMed...
  34. Tellinghuisen J., Spiess A.N. (2014): Comparing real-time quantitative polymerase chain reaction analysis methods for precision, linearity, and accuracy of estimating amplification efficiency. Analytical Biochemistry, 449: 76-82. https://doi.org/10.17221/20/2018-PPS Go to original source...
  35. Thellin O., Zorzi W., Lakaye B., De Borman B., Coumans B., Hennen G., Grisar T., Igout A., Heinen E. (1999): Reference genes as internal standards: use and limits. Journal of Biotechnology, 75: 291-295. Go to original source... Go to PubMed...
  36. Vandesompele J., de Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. (2002): Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3: research 0034.1. doi:10.1186/gb-2002-3-7research0034 Go to original source... Go to PubMed...
  37. Wang X., Ma X., Huang L., Zhang X. (2015): Identification of the valid reference genes for quantitative RT-PCR in annual ryegrass (Lolium multiflorum) under salt stress. Molecules, 20: 4833-4847. Go to original source... Go to PubMed...
  38. Wrzesińska B., Kierzek R., Obrępalska-Stęplowska A. (2016): Evaluation of six commonly used reference genes for gene expression studies in herbicid-resistant Avena fatua biotypes. Weed Research, 56: 284-292. Go to original source...
  39. Zarivi O., Cesare P., Ragnelli A.M., Aimola P., Leonardi M., Bonfigli A., Colafarina S., Poma A.M., Miranda M., Pacioni G. (2015): Validation of reference genes for quantitative real-time PCR in Perigord black truffle (Tuber melanosporum) developmental stages. Phytochemistry, 116: 78-86. Go to original source... Go to PubMed...
  40. Zhang S., An S., Li Z., Wu F., Yang Q., Liu Y., Cao J., Zhang H., Zhang Q., Liu X. (2015): Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene, 555: 393-402. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.