Plant Protect. Sci., 2023, 59(1):1-18 | DOI: 10.17221/61/2022-PPS

Endophytic and rhizobacteria functionalities in alleviating drought stress in maize plantsReview

Victor Funso Agunbiade, Olubukola Oluranti Babalola*
Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa

Drought stress is among the significant forms of abiotic stresses that unfavourably affects maize survival as well as the development from germination to maturity. This paper, therefore, reviewed drought stress effects in maize plants and expatiated on the plausible adoptable mitigation measures to employ in curbing these effects as well. Water shortage prompts drought stress that alters the morphological, physiological and biochemical activities in maize plants. The major drought stress implications on the plant’s survival are mostly in the area of altered metabolic functions, including nutrient metabolism, cell membrane integrity, water relationships, plant yield, photosynthetic processes, osmotic adjustment, and the pigment content. Mitigating strategies, such as the breeding of drought-tolerant varieties, genomic applications for drought tolerance enhancement in maize plants, as well as the use of rhizobacteria and endophytic bacteria, can be employed in alleviating drought stress and ensuring optimal maize productivity.

Keywords: crop improvement; crop yields; climate change; endophytic microbes; food security; sustainable agriculture

Received: May 27, 2022; Accepted: October 19, 2022; Prepublished online: January 13, 2023; Published: January 31, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Agunbiade VF, Babalola OO. Endophytic and rhizobacteria functionalities in alleviating drought stress in maize plants. Plant Protect. Sci. 2023;59(1):1-18. doi: 10.17221/61/2022-PPS.
Download citation

References

  1. Abedinzadeh M., Etesami H., Alikhani H.A. (2019): Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnology Reports, 21: e00305. doi: 10.1016/j.btre.2019.e00305 Go to original source... Go to PubMed...
  2. Abid M., Ali S., Qi L.K., Zahoor R., Tian Z., Jiang D., Snider J.L., Dai T. (2018): Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8: 4615. doi: 10.1038/s41598-018-21441-7 Go to original source... Go to PubMed...
  3. Abreha K.B., Enyew M., Carlsson A.S., Vetukuri R.R., Feyissa T., Motlhaodi T., Ng'uni D., Geleta M. (2022): Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta, 255: 1-23. Go to original source... Go to PubMed...
  4. Adewale S., Akinwale R., Fakorede M., Badu-Apraku B. (2018): Genetic analysis of drought-adaptive traits at seedling stage in early-maturing maize inbred lines and field performance under stress conditions. Euphytica, 214: 1-18. Go to original source...
  5. Agbodjato N.A., Mikpon T., Babalola O.O., Dah-Nouvlessounon D., Amogou O., Lehmane H., Adoko M.Y., Adjanohoun A., Baba-Moussa L. (2021): Use of plant growth promoting rhizobacteria in combination with chitosan on maize crop: Promising prospects for sustainable, environmentally friendly agriculture and against abiotic stress. Agronomy, 11: 2205. doi: 10.3390/agronomy11112205 Go to original source...
  6. Ahluwalia O., Singh P.C., Bhatia R. (2021): A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5: 100032. doi: 10.1016/j.resenv.2021.100032 Go to original source...
  7. Arif Y., Singh P., Bajguz A., Alam P., Hayat S. (2021): Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. Plant Physiology and Biochemistry, 166: 278-289. Go to original source... Go to PubMed...
  8. Aslam M.M., Farhat F., Siddiqui M.A., Yasmeen S., Khan M.T., Sial M.A., Khan I.A. (2021): Exploration of physiological and biochemical processes of canola with exogenously applied fertilizers and plant growth regulators under drought stress. PLoS One, 16: e0260960. doi: 10.1371/journal.pone.0260960 Go to original source... Go to PubMed...
  9. Azeem M., Haider M.Z., Javed S., Saleem M.H., Alatawi A. (2022): Drought stress amelioration in maize (Zea mays L.) by inoculation of Bacillus spp. strains under sterile soil conditions. Agriculture, 12: 50. doi: 10.3390/agriculture12010050 Go to original source...
  10. Badr A., El-Shazly H.H., Tarawneh R.A., Börner A. (2020): Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants, 9: 565. doi: 10.3390/plants9050565 Go to original source... Go to PubMed...
  11. Batool M., El-Badri A.M., Hassan M.U., Haiyun Y., Chunyun W., Zhenkun Y., Jie K., Wang B., Zhou G. (2022): Drought stress in Brassica napus: Effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 12: 1-25. Go to original source...
  12. Bhusal B., Poudel M.R., Rishav P., Regmi R., Neupane P., Bhattarai K., Maharjan B., Bigyan K., Acharya S. (2021): A review on abiotic stress resistance in maize (Zea mays L.): Effects, resistance mechanisms, and management. Journal of Biology and Today's World, 10: 1-4.
  13. Bodhankar S., Grover M., Mallappa M., Reddy G., Ghosh D., Mohapatra S. (2020): The expression of selected drought response genes of maize is influenced by endophytic bacteria inoculation. Journal of Microbiology, Biotechnology and Food Sciences, 10: 267-272. Go to original source...
  14. Bogati K., Walczak M. (2022): The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy, 12: 189. doi: 10.3390/agronomy12010189 Go to original source...
  15. Chandra P., Wunnava A., Verma P., Chandra A., Sharma R.K. (2021): Strategies to mitigate the adverse effect of drought stress on crop plants - Influences of soil bacteria: A review. Pedosphere, 31: 496-509. Go to original source...
  16. Cheng L., Han M., Yang L.M., Li Y., Sun Z., Zhang T. (2018): Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Industrial Crops and Products, 122: 473-482. Go to original source...
  17. Chukwuneme C.F., Babalola O.O., Kutu F.R., Ojuederie O.B. (2020a): Biochemical and molecular characterization, and bioprospecting of drought tolerant actinomycetes from maize rhizosphere soil. BioRxiv, 1-53. Go to original source...
  18. Chukwuneme C.F., Babalola O.O, Kutu F.R., Ojuederie O.B. (2020b): Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. Journal of Plant Interactions, 15: 93-105. Go to original source...
  19. Chukwuneme C.F., Uzoh I.M., Kutu F.R., Babalola O.O. (2021): Food sustainability enhancement: Plant growth-promoting bacteria as key players in the alleviation of drought stress in plants. In: Babalola O.O. (ed.). Food Security and Safety. Cham, Elsevier: 593-610. Go to original source...
  20. Cohen I., Zandalinas S.I., Huck C., Fritschi F.B., Mittler R. (2021): Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171: 66-76. Go to original source... Go to PubMed...
  21. Condon A.G. (2020): Drying times: Plant traits to improve crop water use efficiency and yield. Journal of Experimental Botany, 71: 2239-2252. Go to original source... Go to PubMed...
  22. Curį J.A., Franz D.R., Filosofķa J.E., Balestrasse K.B., Burgueño L.E. (2017): Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms, 5: 1-16. Go to original source... Go to PubMed...
  23. Danish S., Zafar-ul-Hye M., Fahad S., Saud S., Brtnicky M., Hammerschmiedt T., Datta R. (2020a): Drought stress alleviation by ACC deaminase producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without timber waste biochar in maize. Sustainability, 12: 6286. doi: 10.3390/su12156286 Go to original source...
  24. Danish S., Zafar-Ul-Hye M., Hussain S., Riaz M., Qayyum M.F. (2020b): Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pakistan Journal of Botany, 52: 49-60. Go to original source...
  25. Davoudi M., Chen J., Lou Q. (2022): Genome-wide identification and expression analysis of heat shock protein 70 (HSP70) gene family in pumpkin (Cucurbita moschata) rootstock under drought stress suggested the potential role of these chaperones in stress tolerance. International Journal of Molecular Sciences, 23: 1918. doi: 10.3390/ijms23031918 Go to original source... Go to PubMed...
  26. Delfin E.F., Drobnitch S.T., Comas L.H. (2021): Plant strategies for maximizing growth during water stress and subsequent recovery in Solanum melongena L. (eggplant). PLoS One, 16: e0256342. doi: 10.1371/journal.pone.0256342 Go to original source... Go to PubMed...
  27. Dhayalan V., Sudalaimuthu K. (2021): Plant growth promoting rhizobacteria in promoting sustainable agriculture. Global Journal of Environmental Science and Management, 7: 401-418.
  28. Diatta A.A., Fike J.H., Battaglia M.L., Galbraith J.M., Baig M.B. (2020): Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arabian Journal of Geosciences, 13: 595. doi: 10.1007/s12517-020-05586-2 Go to original source...
  29. Dubey A., Kumar A., Malla M.A., Chowdhary K., Singh G., Ravikanth G., Harish S.S., Saati-Santamaria Z., Menéndez E., Dames J.F. (2021): Approaches for the amelioration of adverse effects of drought stress on crop plants. Frontiers in Bioscience, 26: 928-947. Go to original source... Go to PubMed...
  30. Ekpa O., Palacios-Rojas N., Kruseman G., Fogliano V., Linnemann A.R. (2018): Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Global Food Security, 17: 48-56. Go to original source...
  31. Enebe M.C., Babalola O.O. (2019): The impact of microbes in the orchestration of plants' resistance to biotic stress: A disease management approach. Applied Microbiology and Biotechnology, 103: 9-25. Go to original source... Go to PubMed...
  32. Fadiji A.E., Ayangbenro A.S., Babalola O.O. (2020): Metagenomic profiling of the community structure, diversity, and nutrient pathways of bacterial endophytes in maize plant. Antonie Van Leeuwenhoek, 113: 1559-1571. Go to original source... Go to PubMed...
  33. Fadiji A.E., Babalola O.O., Santoyo G., Perazzolli M. (2022): The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops. Frontiers in Microbiology, 12: 4392. doi: 10.3389/fmicb.2021.829099 Go to original source... Go to PubMed...
  34. Gao S., Wang Y., Yu S., Huang Y., Liu H., Chen W., He X. (2020): Effects of drought stress on growth, physiology and secondary metabolites of two adonis species in Northeast China. Scientia Horticulturae, 259: 108795. doi: 10.1016/j.scienta.2019.108795 Go to original source...
  35. Getahun A., Muleta D., Assefa F., Kiros S. (2020): Plant growth-promoting rhizobacteria isolated from degraded habitat enhance drought tolerance of acacia (Acacia abyssinica Hochst. ex Benth.) seedlings. International Journal of Microbiology, 2020: 8897998. doi: 10.1155/2020/8897998 Go to original source... Go to PubMed...
  36. Giannopoulou A.I., Kanakoglou D.S., Piperi C. (2022): Transcription factors with targeting potential in gliomas. International Journal of Molecular Sciences, 23: 3720. doi: 10.3390/ijms23073720 Go to original source... Go to PubMed...
  37. Goswami M., Suresh D. (2020): Plant growth-promoting rhizobacteria-alleviators of abiotic stresses in soil: A review. Pedosphere, 30: 40-61. Go to original source...
  38. Guo Z., Yang N., Zhu C., Gan L. (2017): Exogenously applied poly-γ-glutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system. Environmental Science and Pollution Research, 24: 6592-6598. Go to original source... Go to PubMed...
  39. Hafez E.M., Osman H.S., Gowayed S.M., Okasha S.A, Omara A.E.D., Sami R., El-Monem A., Ahmed M., El-Razek A., Usama A. (2021): Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy, 11: 676. doi: 10.3390/agronomy11040676 Go to original source...
  40. Hanaka A., Ozimek E., Reszczyńska E., Jaroszuk-¦cise³ J., Stolarz M. (2021): Plant tolerance to drought stress in the presence of supporting bacteria and fungi: An efficient strategy in horticulture. Horticulturae, 7: 390. doi: 10.3390/horticulturae7100390 Go to original source...
  41. Harrison M.T., Cullen B.R., Mayberry D.E., Cowie A.L., Bilotto F., Badgery W.B., Liu K., Davison T., Christie K.M., Muleke A. (2021): Carbon myopia: The urgent need for integrated social, economic and environmental action in the livestock sector. Global Change Biology, 27: 5726-5761. Go to original source... Go to PubMed...
  42. Hera M.H.R., Hossain M., Paul A.K. (2018): Effect of foliar zinc spray on growth and yield of heat tolerant wheat under water stress. International Journal of Biological and Environmental Engineering, 1: 10-16.
  43. Hewedy O.A., Abdel Lateif K.S., Seleiman M.F., Shami A., Albarakaty F.M., El-Meihy R.M. (2020): Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology, 9: 189. doi: 10.3390/biology9080189 Go to original source... Go to PubMed...
  44. Huan L., Jin-Qiang W., Qing L. (2020): Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. Journal of Plant Physiology, 253: 153265. doi: 10.1016/j.jplph.2020.153265 Go to original source... Go to PubMed...
  45. Hunter M.C., Kemanian A.R., Mortensen D.A. (2021): Cover crop effects on maize drought stress and yield. Agriculture, Ecosystems & Environment, 311: 107294. doi: 10.1016/j.agee.2020.107294 Go to original source...
  46. Hussain H.A., Hussain S., Khaliq A., Ashraf U., Anjum S.A., Men S., Wang L. (2018): Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9: 393. doi: 10.3389/fpls.2018.00393 Go to original source... Go to PubMed...
  47. Hussain S., Hussain S., Qadir T., Khaliq A., Ashraf U., Parveen A., Saqib M., Rafiq M. (2019): Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6: 389-402. Go to original source...
  48. Igiehon N.O., Babalola O.O. (2018): Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. International Journal of Environmental Research and Public Health, 15: 574. doi: 10.3390/ijerph15040574 Go to original source... Go to PubMed...
  49. Igiehon O.N., Babalola O.O. (2021): Rhizobium and mycorrhizal fungal species improved soybean yield under drought stress conditions. Current Microbiology, 78: 1615-1627. Go to original source... Go to PubMed...
  50. Igiehon N.O., Babalola O.O., Aremu B.R. (2019): Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiology, 19: 1-22. Go to original source... Go to PubMed...
  51. Jacques C., Salon C., Barnard R.L., Vernoud V., Prudent M. (2021): Drought stress memory at the plant cycle level: A review. Plants, 10: 1873. doi: 10.3390/plants10091873 Go to original source... Go to PubMed...
  52. Jahan M., Hossain A., Jaime A., Da Silva T., El Sabagh A., Rashid M., Barutēular C. (2019): Effect of naphthaleneacetic acid on root and plant growth and yield of ten irrigated wheat genotypes. Pakistan Journal of Botany, 51: 451-459. Go to original source...
  53. Jan R., Asaf S., Numan M., Kim K.M. (2021): Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11: 968. doi: 10.3390/agronomy11050968 Go to original source...
  54. Jochum M.D., McWilliams K.L., Borrego E.J., Kolomiets M.V., Niu G., Pierson E.A., Jo Y.K. (2019): Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Frontiers in Microbiology, 10: 2106. doi: 10.3389/fmicb.2019.02106 Go to original source... Go to PubMed...
  55. Kamal N.M., Gorafi Y.S.A., Abdeltwab H., Abdalla I., Tsujimoto H., Ghanim A.M.A. (2021): A new breeding strategy towards introgression and characterization of stay-green QTL for drought tolerance in Sorghum. Agriculture, 11: 598. doi: 10.3390/agriculture11070598 Go to original source...
  56. Kannenberg S.A., Novick K.A., Phillips R.P. (2018): Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species. Tree Physiology, 38: 582-590. Go to original source... Go to PubMed...
  57. Kapilan R., Vaziri M., Zwiazek J.J. (2018): Regulation of aquaporins in plants under stress. Biological Research, 51: 4. doi: 10.1186/s40659-018-0152-0 Go to original source... Go to PubMed...
  58. Kaur S., Kumar P. (2020): Morpho-physiological and biochemical response of plants under drought stress. Journal of Pharmacognosy and Phytochemistry, 9: 352-357.
  59. Kennett D.J., Prufer K.M., Culleton B.J., George R.J., Robinson M., Trask W.R., Buckley G.M., Moes E., Kate E.J., Harper T.K. (2020): Early isotopic evidence for maize as a staple grain in the Americas. Science Advances, 6: 3245. doi: 10.1126/sciadv.aba3245 Go to original source... Go to PubMed...
  60. Khadka K., Earl H.J., Raizada M.N., Navabi A. (2020): A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11: 715. doi: 10.3389/fpls.2020.00715 Go to original source... Go to PubMed...
  61. Khan A., Pan X., Najeeb U., Tan DKY., Fahad S., Zahoor R., Luo H. (2018): Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51: 1-17. Go to original source... Go to PubMed...
  62. Khayatnezhad M., Gholamin R. (2021): The effect of drought stress on the superoxide dismutase and chlorophyll content in durum wheat genotypes. Advancements in Life Sciences, 8: 119-123.
  63. Konapala G., Mishra A.K., Wada Y., Mann M.E. (2020): Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11: 1-10. Go to original source... Go to PubMed...
  64. Kubi H.A.A., Khan M.A., Adhikari A., Imran M., Kang S.M., Hamayun M., Lee I.J. (2021): Silicon and plant growth-promoting rhizobacteria Pseudomonas psychrotolerans CS51 mitigates salt stress in Zea mays L. Agriculture, 11: 272. doi: 10.3390/agriculture11030272 Go to original source...
  65. Kumar A., Verma J.P. (2018): Does plant-microbe interaction confer stress tolerance in plants: A review? Microbiological Research, 207: 41-52. Go to original source... Go to PubMed...
  66. Kumar A., Patel J., Meena V.S., Ramteke P. (2019): Plant growth-promoting rhizobacteria: Strategies to improve abiotic stresses under sustainable agriculture. Journal of Plant Nutrition, 42: 1402-1415. Go to original source...
  67. Kurowska M.M., Wiecha K., Gajek K., Szarejko I. (2019): Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley. PLoS One, 14: e0226423. doi: 10.1371/journal.pone.0226423 Go to original source... Go to PubMed...
  68. Kushwaha P., Kashyap P.L., Bhardwaj A.K., Kuppusamy P., Srivastava A.K., Tiwari R.K. (2020): Bacterial endophyte mediated plant tolerance to salinity: Growth responses and mechanisms of action. World Journal of Microbiology and Biotechnology, 36: 26. doi: 10.1007/s11274-020-2804-9 Go to original source... Go to PubMed...
  69. Li Y., Song H., Zhou L., Xu Z., Zhou G. (2019): Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drought and rewatering regimes in a maize field. Agricultural and Forest Meteorology, 272: 40-54. Go to original source...
  70. Liang J., Shi W. (2021): Poly-γ-glutamic acid improves water-stable aggregates, nitrogen and phosphorus uptake efficiency, water-fertilizer productivity, and economic benefit in barren desertified soils of Northwest China. Agricultural Water Management, 245: 106551. doi: 10.1016/j.agwat.2020.106551 Go to original source...
  71. Lin Y., Watts D.B., Kloepper J.W., Feng Y., Torbert H.A. (2020): Influence of plant growth-promoting rhizobacteria on corn growth under drought stress. Communications in Soil Science and Plant Analysis, 51: 250-264. Go to original source...
  72. Liu S., Zenda T., Dong A., Yang Y., Wang N., Duan H. (2021): Global transcriptome and weighted gene co-expression network analyses of growth-stage-specific drought stress responses in maize. Frontiers in Genetics, 12: 645443. doi: 10.3389/fgene.2021.645443 Go to original source... Go to PubMed...
  73. Liu Y., Cao X., Yue L., Wang C., Tao M., Wang Z., Xing B. (2022): Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 299: 118900. doi: 10.1016/j.envpol.2022.118900 Go to original source... Go to PubMed...
  74. Lunduka R.W., Mateva K.I., Magorokosho C., Manjeru P. (2019): Impact of adoption of drought-tolerant maize varieties on total maize production in south Eastern Zimbabwe. Climate and Development, 11: 35-46. Go to original source... Go to PubMed...
  75. Ma Y., Dias M.C., Freitas H. (2020): Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11: 1750. doi: 10.3389/fpls.2020.591911 Go to original source... Go to PubMed...
  76. Maqbool S., Amna A., Mehmood S., Suhaib M., Sultan T., Munis M.F.H. (2021): Interaction of acc deaminase and antioxidant enzymes to induce drought tolerance in Enterobacter cloacae 2WC2 inoculated maize genotypes. Pakistan Journal of Botany, 53: 893-903. Go to original source...
  77. Moon M., Li D., Liao W., Rigden A.J., Friedl M.A. (2020): Modification of surface energy balance during springtime: The relative importance of biophysical and meteorological changes. Agricultural and Forest Meteorology, 284: 107905. doi: 10.1016/j.agrformet.2020.107905 Go to original source...
  78. Mpandeli S., Nhamo L., Moeletsi M., Masupha T., Magidi J., Tshikolomo K., Liphadzi S., Naidoo D., Mabhaudhi T. (2019): Assessing climate change and adaptive capacity at local scale using observed and remotely sensed data. Weather and Climate Extremes, 26: 100240. doi: 10.1016/j.wace.2019.100240 Go to original source...
  79. Mushayi M., Shimelis H., Derera J., Shayanowako A.I., Mathew I. (2020): Multi-environmental evaluation of maize hybrids developed from tropical and temperate lines. Euphytica, 216: 84. doi: 10.1007/s10681-020-02618-6 Go to original source...
  80. Nadeem S.M., Ahmad M., Tufail M.A., Asghar H.N., Nazli F., Zahir Z.A. (2021): Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiologia Plantarum, 172: 463-476. Go to original source... Go to PubMed...
  81. Nepolean T., Kaul J., Mukri G., Mittal S. (2018): Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize. Frontiers in Plant Science, 9: 361. doi: 10.3389/fpls.2018.00361 Go to original source... Go to PubMed...
  82. Niu X., Song L., Xiao Y., Ge W. (2018): Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology, 8: 2580. doi: 10.3389/fmicb.2017.02580 Go to original source... Go to PubMed...
  83. Ojuederie O.B., Olanrewaju O.S., Babalola O.O. (2019): Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9: 712. doi: 10.3390/agronomy9110712 Go to original source...
  84. Okorie V.O., Mphambukeli T.N., Amusan S.O. (2019): Exploring the political economy of water and food security nexus in BRICS. Africa Insight, 48: 21-38.
  85. Olechowska E., S³omnicka R., Ka¼mińska K., Olczak-Woltman H., Bartoszewski G. (2022): The genetic basis of cold tolerance in cucumber (Cucumis sativus L.) - The latest developments and perspectives. Journal of Applied Genetics, 13: 1-12. Go to original source... Go to PubMed...
  86. Omotayo O.P., Igiehon O.N., Babalola O.O. (2021): Metagenomic study of the community structure and functional potentials in maize rhizosphere microbiome: Elucidation of mechanisms behind the improvement in plants under normal and stress conditions. Sustainability, 13: 8079. doi: 10.3390/su13148079 Go to original source...
  87. Pazhamala L.T., Kudapa H., Weckwerth W., Millar A.H., Varshney R.K. (2021): Systems biology for crop improvement. The Plant Genome, 14: e20098. doi: 10.1002/tpg2.20098 Go to original source... Go to PubMed...
  88. Pepe M., Crescente M.F., Varone L. (2022): Effect of water stress on physiological and morphological leaf traits: A comparison among the three widely-spread invasive alien species Ailanthus altissima, Phytolacca americana, and Robinia pseudoacacia. Plants, 11: 899. doi: 10.3390/plants11070899 Go to original source... Go to PubMed...
  89. Pokhrel S. (2021): Effects of drought stress on the physiology and yield of the maize: A review. Food and Agri Economics Review (FAER), 1: 36-40. Go to original source...
  90. Rather R.A., Bano H., Padder S.A., Baba T.R., Ara S., Lone F.A., Nazir S. (2022): Impact of anthropogenic pressure on physico-chemical characteristics of forest soils of Kashmir Himalaya. Bulletin of Environmental Contamination and Toxicology, 108: 1088-1097. Go to original source... Go to PubMed...
  91. Razi K., Muneer S. (2021): Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41: 669-691. Go to original source... Go to PubMed...
  92. Rezazadeh S., Ilkaee M., Aghayari F., Paknejad F., Rezaee M. (2019): The physiological and biochemical responses of directly seeded and transplanted maize (Zea mays L.) supplied with plant growth-promoting rhizobacteria (PGPR) under water stress. Iranian Journal of Plant Physiology, 10: 3009-3021.
  93. Riache M., Revilla P., Maafi O., Malvar R.A., Djemel A. (2021): Combining ability and heterosis of Algerian Saharan maize populations (Zea mays L.) for tolerance to no-nitrogen fertilization and drought. Agronomy, 11: 492. doi: 10.3390/agronomy11030492 Go to original source...
  94. Rida S., Maafi O., López-Malvar A., Revilla P., Riache M., Djemel A. (2021): Genetics of germination and seedling traits under drought stress in a MAGIC population of maize. Plants, 10: 1786. doi: 10.3390/plants10091786 Go to original source... Go to PubMed...
  95. Saad-Allah K.M., Nessem A.A., Ebrahim M.K., Gad D. (2021): Evaluation of drought tolerance of five maize genotypes by virtue of physiological and molecular responses. Agronomy, 12: 59. doi: 10.3390/agronomy12010059 Go to original source...
  96. Sah R., Chakraborty M., Prasad K., Pandit M., Tudu V., Chakravarty M., Narayan S., Rana M., Moharana D. (2020): Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10: 2944. doi: 10.1038/s41598-020-59689-7 Go to original source... Go to PubMed...
  97. Sallam A., Alqudah A.M., Dawood M.F., Baenziger P.S., Börner A. (2019): Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 20: 3137. doi: 10.3390/ijms20133137 Go to original source... Go to PubMed...
  98. Sarma M., Ahmed A., Saharia D.D., Sarma A. (2021): Marker assisted selection in plant breeding: Current status, challenges and future opportunities. Progressive Agriculture, 21: 166-176. Go to original source...
  99. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. (2021): Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10: 259. doi: 10.3390/plants10020259 Go to original source... Go to PubMed...
  100. Semida W.M., Abdelkhalik A., Rady M.O., Marey R.A., Abd El-Mageed T.A. (2020): Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272: 109580. doi: 10.1016/j.scienta.2020.109580 Go to original source...
  101. Sharif P., Seyedsalehi M., Paladino O., Van Damme P., Sillanpää M., Sharifi A. (2018): Effect of drought and salinity stresses on morphological and physiological characteristics of canola. International Journal of Environmental Science and Technology, 15: 1859-1866. Go to original source...
  102. Sharma M., Kumar P., Verma V., Sharma R., Bhargava B., Irfan M. (2022): Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiology and Biochemistry, 179: 10-24. Go to original source... Go to PubMed...
  103. Shekoofa A., Sinclair T.R. (2018): Aquaporin activity to improve crop drought tolerance. Cells, 7: 123. doi: 10.3390/cells7090123 Go to original source... Go to PubMed...
  104. Shivaraj S., Sharma Y., Chaudhary J., Rajora N., Sharma S., Thakral V., Ram H., Sonah H., Singla-Pareek S.L., Sharma T.R. (2021): Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 184: 104367. doi: 10.1016/j.envexpbot.2020.104367 Go to original source...
  105. Siddique S., Naveed M., Yaseen M., Shahbaz M. (2022): Exploring potential of seed endophytic bacteria for enhancing drought stress resilience in maize (Zea mays L.). Sustainability, 14: 673. doi: 10.3390/su14020673 Go to original source...
  106. Solis J., Gutierrez A., Mangu V., Sanchez E., Bedre R., Linscombe S., Baisakh N. (2018): Genetic mapping of quantitative trait loci for grain yield under drought in rice under controlled greenhouse conditions. Frontiers in Chemistry, 5: 129. doi: 10.3389/fchem.2017.00129 Go to original source... Go to PubMed...
  107. Song L., Jin J. (2020): Improving CERES-Maize for simulating maize growth and yield under water stress conditions. European Journal of Agronomy, 117: 126072. doi: 10.1016/j.eja.2020.126072 Go to original source...
  108. Sood G., Kaushal R., Sharma M. (2020): Alleviation of drought stress in maize (Zea mays L.) by using endogenous endophyte Bacillus subtilis in North West Himalayas. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 70: 361-370. Go to original source...
  109. Tesfaye K., Kruseman G., Cairns J.E., Zaman-Allah M., Wegary D., Zaidi P., Boote K.J., Erenstein O. (2018): Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate Risk Management, 19: 106-119. Go to original source...
  110. Thakur M., Mittal D., Khosla PK., Saini V., Saini R.V., Saini A.K. (2021): Rhizobacteria associated with Spilanthes acmella Murr. confer drought-tolerance and plant growth promotion. Biointerface Research in Applied Chemistry, 11: 13155-13170. Go to original source...
  111. Toscano S., Ferrante A., Romano D. (2019): Response of mediterranean ornamental plants to drought stress. Horticulturae, 5: 6. doi: 10.3390/horticulturae5010006 Go to original source...
  112. Umair Hassan M., Aamer M., Umer Chattha M., Haiying T., Shahzad B., Barbanti L., Nawaz M., Rasheed A., Afzal A., Liu Y. (2020): The critical role of zinc in plants facing the drought stress. Agriculture, 10: 396. doi: 10.3390/agriculture10090396 Go to original source...
  113. Uwizeyimana D., Mureithi S.M., Mvuyekure S.M., Karuku G., Kironchi G. (2019): Modelling surface runoff using the soil conservation service-curve number method in a drought prone agro-ecological zone in Rwanda. International Soil and Water Conservation Research, 7: 9-17. Go to original source...
  114. Uzoh I., Babalola O. (2020): Review on increasing iron availability in soil and its content in cowpea (Vigna unguiculata) by plant growth promoting rhizobacteria. African Journal of Food, Agriculture, Nutrition and Development, 20: 15779-15799. Go to original source...
  115. Waititu J.K., Zhang X., Chen T., Zhang C., Zhao Y., Wang H. (2021): Transcriptome analysis of tolerant and susceptible maize genotypes reveals novel insights about the molecular mechanisms underlying drought responses in leaves. International Journal of Molecular Sciences, 22: 6980. doi: 10.3390/ijms22136980 Go to original source... Go to PubMed...
  116. Wan W., Liu Z., Li K., Wang G., Wu H., Wang Q. (2021): Drought monitoring of the maize planting areas in Northeast and North China Plain. Agricultural Water Management, 245: 106636. doi: 10.1016/j.agwat.2020.106636 Go to original source...
  117. Wan W., Liu Z., Li J., Xu J., Wu H., Xu Z. (2022): Spatiotemporal patterns of maize drought stress and their effects on biomass in the Northeast and North China Plain from 2000 to 2019. Agricultural and Forest Meteorology, 315: 108821. doi: 10.1016/j.agrformet.2022.108821 Go to original source...
  118. Wang Y., Yang J., Chen Y., Su Z., Li B., Guo H., De Maeyer P. (2020): Monitoring and predicting drought based on multiple indicators in an arid area, China. Remote Sensing, 12: 2298. doi: 10.3390/rs12142298 Go to original source...
  119. Wang L., Chen S., Yu B. (2022): Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives. Trends in Food Science & Technology, 119: 1-12. Go to original source...
  120. Webber H., Ewert F., Olesen J.E., Müller C., Fronzek S., Ruane A.C., Bourgault M., Martre P., Ababaei B., Bindi M. (2018): Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9: 1-10. Go to original source... Go to PubMed...
  121. Wei W., Pang S., Wang X., Zhou L., Xie B., Zhou J., Li C. (2020): Temperature vegetation precipitation dryness index (TVPDI)-based dryness-wetness monitoring in China. Remote Sensing of Environment, 248: 111957. doi: 10.1016/j.rse.2020.111957 Go to original source...
  122. Wilmowicz E., Kuęko A., Golińska P., Burchardt S., Przywieczerski T., ¦widziński M., Brzozowska P., Kapu¶cińska D. (2020): Abscisic acid and ethylene in the control of nodule-specific response on drought in yellow lupine. Environmental and Experimental Botany, 169: 103900. doi: 10.1016/j.envexpbot.2019.103900 Go to original source...
  123. Xu Z., Ma J., Lei P., Wang Q., Feng X., Xu H. (2020): Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L. Scientific Reports, 10: 252. doi: 10.1038/s41598-019-57190-4 Go to original source... Go to PubMed...
  124. Xu Q.Q., Sami A., Zhang H., Jin X.Z., Zheng W.Y., Zhu Z.Y., Wu L.L., Lei Y.H., Chen Z.P., Li Y. (2022): Combine influence of low temperature and drought on different varieties of rapeseed (Brassica napus L.). South African Journal of Botany, 147: 400-414. Go to original source...
  125. Yang G., Liu J., Zhao C., Li Z., Huang Y., Yu H., Xu B., Yang X., Zhu D., Zhang X. (2017): Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in Plant Science, 8: 1111. doi: 10.3389/fpls.2017.01111 Go to original source... Go to PubMed...
  126. Yang X., Lu M., Wang Y., Wang Y., Liu Z., Chen S. (2021): Response mechanism of plants to drought stress. Horticulturae, 7: 50. doi: 10.3390/horticulturae7030050 Go to original source...
  127. Zhang Z., Hua L., Gupta A., Tricoli D., Edwards K.J., Yang B., Li W. (2019): Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal, 17: 1623-1635. Go to original source... Go to PubMed...
  128. Zhang H., Sun X., Dai M. (2021): Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 100228. doi: 10.1016/j.xplc.2021.100228 Go to original source... Go to PubMed...
  129. Zhang H., Zhu J., Gong Z., Zhu J.K. (2022a): Abiotic stress responses in plants. Nature Reviews Genetics, 23: 104-119. Go to original source... Go to PubMed...
  130. Zhang Z., Jatana B.S., Campbell B., Gill J., Suseela V., Tharayil N. (2022b): Cross inoculation of rhizobiome from a congeneric ruderal plant imparts drought tolerance in maize (Zea mays) through changes in root morphology and proteome. The Plant Journal, 111: 54-71. Go to original source... Go to PubMed...
  131. Zheng H., Yang Z., Wang W., Guo S., Li Z., Liu K., Sui N. (2020): Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. Plant Physiology and Biochemistry, 149: 11-26. Go to original source... Go to PubMed...
  132. Zia R., Nawaz M.S., Siddique M.J., Hakim S., Imran A. (2021): Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242: 126626. doi: 10.1016/j.micres.2020.126626 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.