Plant Protect. Sci., 2023, 59(3):292-297 | DOI: 10.17221/131/2022-PPS

Verification of a machine learning model for weed detection in maize (Zea mays) using infrared imagingOriginal Paper

Adam Hruška1, Pavel Hamouz1
1 Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

The potential of the framework of precision agriculture points towards the emergence of site-specific weed control. In light of the phenomena, the search for a cost-effective approach can help the discipline to accelerate the practical implementation. The paper presents a near-infrared data-driven machine learning model for real-time weed detection in wide-row cultivated maize (Zea mays) fields. The basis of the model is a dataset of 5 120 objects including 18 species of weeds significant in the context of wide-row crop production in the Czech Republic. The custom model was subsequently compared with a state-of-the-art machine learning tool You only look once (version 3). The custom model achieved 94.5 % identification accuracy while highlighting the practical limitations of the dataset.

Keywords: computer vision; NIR images; machine learning; visual analysis; neural networks

Accepted: June 6, 2023; Prepublished online: August 2, 2023; Published: September 20, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hruška A, Hamouz P. Verification of a machine learning model for weed detection in maize (Zea mays) using infrared imaging. Plant Protect. Sci. 2023;59(3):292-297. doi: 10.17221/131/2022-PPS.
Download citation

References

  1. Alam M., Alam M.S., Roman M., Tufail M., Khan M.U., Khan M.T. (2020): Real-time machine-learning based crop/weed detection and classification for variable-rate spraying in precision agriculture. In: 7th International Conference on Electrical and Electronics Engineering, April 14-16, 2020, Antalya, Turkey: 273-280. Go to original source...
  2. Dyrmann M., Karstoft H., Midtiby H.S. (2016): Plant species classification using deep convolutional neural network. Biosystems Engineering, 151: 72-80. Go to original source...
  3. Farooq A., Jia X., Hu J., Zhou J. (2019): Multi-resolution weed classification via convolutional neural network and superpixel based local binary pattern using remote sensing images. Remote Sensing, 11: 1692. doi: 10.3390/rs11141692 Go to original source...
  4. Fawakherji M., Potena C., Pretto A., Bloisi D.D., Nardi D. (2021): Multi-spectral image synthesis for crop/weed segmentation in precision farming. Robotics and Autonomous Systems, 146: 103861. doi: 10.1016/j.robot.2021.103861 Go to original source...
  5. Gebbers R., Adamchuk V.I. (2010): Precision agriculture and food security. Science, 327: 828-831. Go to original source... Go to PubMed...
  6. Gerhards R., Sökefeld M., Nabout A., Therburg R.D., Kühbauch W. (2002): Online weed control using digital image analysis. Journal of plant diseasesand protection,
  7. 18: 421-427.
  8. Ioffe S., Szegedy C. (2015): Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. PMLR,
  9. 37: 448-456.
  10. Junior L.C.M., Ulson J.A.C. (2021): Real time weed detection using computer vision and deep learning. In: 2021 14th IEEE International Conference on Industry Applications, September 10, 2021, Sao Paulo, Brasil: 1131-1137). Go to original source...
  11. Kaplan Z., Danihelka J., Chrtek J., Kirschner J., Kubát K., Štech M., Štěpánek J. (Eds.), 2019. Klíč ke květeně České republiky [Key to the flora of the Czech Republic], Academia, Praha.
  12. Liakos K.G., Busato P., Moshou D., Pearson S., Bochtis D. (2018): Machine learning in agriculture: A review. Sensors, 18: 2674. doi: 10.3390/s18082674 Go to original source... Go to PubMed...
  13. López-Granados F. (2011): Weed detection for site-specific weed management: mapping and real-time approaches. Weed Research, 51: 1-11. Go to original source...
  14. Miikkulainen R., Liang J., Meyerson E., Rawal A., Fink D., Francon O., Raju B, Shahrzad H., Navruzyan A., Duffy N., Hodjat B. (2019): Evolving deep neural networks. Artificial intelligence in the age of neural networks and brain computing. Elsevier Academic Press: 293-312. Go to original source...
  15. Nawara J. (2010): Machine learning: face recognition technology evidence in criminal trials. University of Louisville Law Review, 49: 601.
  16. O'Mahony N., Campbell S., Carvalho A., Harapanahalli S., Hernandez G.V., Krpalkova L., Riordan D., Walsh J. (2020): Deep learning vs. traditional computer vision. In: Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference, April 25-26, 2019, Las Vegas, Go to original source...
  17. USA: 128-144.
  18. Potena C., Nardi D., Pretto A. (2017): Fast and accurate crop and weed identification with summarized train sets for precision agriculture. In: International Conference on Intelligent Autonomous Systems. Springer, Cham: 105-121. Go to original source...
  19. Pretty J. (2008): Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 447-465. Go to original source... Go to PubMed...
  20. Redmon J., Farhadi A. (2018). Yolov3: An incremental improvement. ArXiv preprint. arXiv:1804.02767
  21. Wang K., Gao X., Zhao Y., Li X., Dou D., Xu C.Z. (2019): Pay attention to features, transfer learn faster CNNs. International conference on learning representations. doi: 10.48550/arXiv.1804.02767 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.